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CHAPTER 1. LINEAR OPTICAL RESPONSE THEORY (LINEAR 

SPECTROSCOPY) FOR CONDENSED PHASE SYSTEMS 

LI Introduction 

A substantial part of the history of quantum mechanics is associated with efforts 

directed toward an understanding of the interaction between light and matter at the atomic 

and molecular levels. The interaction of electromagnetic radiation with matter is one of the 

richest probes into the structure and dynamical processes of matter. It is difficult to 

understand the microscopic structure of matter without spectroscopic techniques. 

One response of the medium to the electric field E of the radiation field takes the 

form of a dielectric polarization density P. The interaction of radiation with the medium 

generates a polarization which serves as a source of the new radiation field according to 

Maxwell's equation 

I Air 
V^E(r,0 + -VfTE(r,0 = P(r,r), (1.1) 

c" or c or 

where c is the speed of light. Since the optical polarization is the only material quantity that 

appears in Maxwell's equation (the right hand side of Maxwell's equation in a vacuum is 

zero), it carries all microscopic information about the system. Electronic and vibrational 

relaxations and other dynamical processes will show up in the measurements through their 

effect on the optical polarization. Therefore, calculating the optical polarization is essential 

for obtaining spectroscopic information. Eq. (LI) can be solved self-consistently [1, 2, 3]. 

Spectroscopic measurements can be classified according to the order of the response 

of the system under study with respect to the applied fields. The polarization to nth order in 

the E field is denoted PC"^), 

P=P^I)-^Pnl, (1.2) 
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where 

Pnl= P<2) + P(3) + (1.3) 

P(') is the linear polarization that controls all linear optical measurements, such as linear 

absorption and fluorescence, whereas P^l is the nonlinear polarization that governs multi-

wave mixing experiments. The polarization may be classified according to the power law of 

the field. For example, PO) corresponds to linear interactions, that is, interactions in which 

the polarization is proportional to the applied field and has the same frequency. P(-) is 

proportional to product of two fields, or to the square of a single field, and may contain 

firequencies not found in the incident field(s), and the nth order polarization PC^^) is 

proportional to n fields (or a combination of fields corresponding to an nth order product) and 

may contain numerous fi:equency combinations, although in most current experiments n < 3. 

P(-) is the lowest order nonlinear polarization for anisotropic media such as interfaces, 

quantum wells, ad monolayers, while P(3) is the lowest order nonlinear polarization in an 

isotropic medium representing nonlinear processes (4-wave mixing experiments) such as 

photon echo, hole-burning, and pump-probe spectroscopies. 

Evidently, the optical polarization of the medium plays a major role in die 

calculations and interpretations of optical measurements. In the following sections we will 

see diat P is calculated in terms of the optical response function which, in turn, is calculated 

firom the dipole moment correlation fimction. Therefore, we shall present a brief definition 

and description of classical time correlation functions in Section 1.1.1 in order to facilitate 

discussion of the dipole moment time correlation function formalism of spectroscopy in 

Section 1.1.2. This will help us understand the underlying physics of any time-domain or 

firequency domain spectroscopic measurements of condensed phase systems involving linear 

and quadratic electron-phonon coupling in the following sections. 
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l.l.l Classical Time Correlation Functions 

Correlation flinctionts occur quite frequently in statistical physics. The time 

correlation function approach was initially developed by Green and Kubo [4, 5-8] in certain 

areas of non-equilibrium statistical mechanics. Time correlation functions are as important in 

non-equilibrium statistical mechanics as the partition function is in equilibrium statistical 

mechanics. 

The description of a classical time correlation function is presented below. Let p(t) 

and q(t) denote all the momenta and the spatial coordinates needed to describe the system of 

interest, and let p(0) = p and q(0) = q denote the phase space coordinates at some initial time, 

t = 0. The p(t) and q(t) are related to p and q tlirough the equations of motion of the system 

as follows 

p(t)=p(p, q; t) 

q(t)=q(p, q; t). (1.4) 

Let A{p(t), q(t)} be some function of the phase space coordinates of die system. Using Eq. 

(1.4), one can write 

A{p(t), q(t)} = A{p, q; t} = A(t). (1.5) 

A classical time correlation fimction of A(t) is defined as 

C(t) = <A(0) A(t)> =j I  dp dq A(p, q; 0) A(p, q; t) f {p ,q )  (1.6) 

where f{p,q) is the equilibrium phase space distribution function. If A(t) is a vectorial 

function, then C(t) is written as 
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C(t) = <A(0). A(t)>. (1.7) 

For instance, consider the velocity correlation function C(t) = <V(0). V(t)> for a gas. When 

t = 0, C(0) = <V(0). V(0)> = <u->, which is simply the equilibrium average of u-, which 

equals 3kT/m for a gas by equipartition theorem. Here, k is Boltzmann constant, T is the 

temperature, and m is the mass of the particle. As time evolves, a particle will suffer 

collisions which will cause its velocity and direction to change and, as a result, its velocity at 

time t will be less and less correlated with its initial value V(0). After a sufficient number of 

collisions V(t) will be completely uncorrelated with its initial value, V(0), and C(t) will be 

equal to zero. 

Therefore, we expect the velocity correlation to start at its initial value C(0) = 3kT/m, which 

is the correlation maximum value, and to eventually decay to zero. Assuming that C(t) 

decays exponentially with a damping constant y, i.e., C(t) = (3kT/m) exp(-y t), it is clearly 

seen that C(t) is maximmum at t = 0, and then starts to decay as time evolves till it becomes 

zero. We can see from the above example that a possible definition of time correlation 

function is that it describes the average decay of a property of a system from its initial value. 

Another possible definition is that time correlation function describes how long some given 

property of a system persists until it is averaged out by the microscopic motion of the 

molecules of the system. Afterall, C(t) of a quantity A is an average over an ensemble of 

systems according to Eq. (1.6). 

An important property of time correlation functions is that they satisfy stationary 

average over time [4-9]: 

or with J 

<A(0) B(t)> = <A(s) B(t+s)>, 

<A(0) B(t)> = <A(-t) B(0)>. 

(1.8) 

(1-9) 
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The property in Eq. (1.9) is called stationarity. Hence, this average depends on the time 

difference "s" rather than on absolute times (t|= 0 or t^ = t) separately . Classical correlation 

functions are even functions of time[3-7, 10-13]. A demonstration that a classical correlation 

function is even goes as follows: 

with 

and using the fact that the correlation functions are invariant under time translation 

(stationarity) and that classical dynamical variables commute, one obtains 

C(-t) = <A(-t) A(0)> 

= <A(0) A(t)> 

Clearly, C(0) = <A(0) A(0)> = <A2>. 

1.1.2 Quantum Correlation Functions in Spectroscopy 

Consider a system of interacting molecules in a quantum state described by die 

initial state 1/). If this system interacts with an electric field of frequency co. transitions to 

other quantum states \f) of the molecules may be induced provided the field frequency 

closely matches one of the Bohr frequencies 

C(-t) = <A(G) A(-t)>, ( I . 1 0 )  

= C(t). (l.ll) 

coj- ,  ( l . l l )  
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Using the standard formulas of quantum mechanical time-dependent perturbation theory in 

the Schrodinger representation, we can write an equation for the absorption lineshape aico), 

which represents the quantum mechanical transitions of the absorbing molecules from |/) to 

where p, (the density operator, vide infra) is the probability of finding the system in the initial 

state |/) and v is the dipole moment operator. This formula represents the Fermi Golden Rule 

[14-17] in the Schrodinger picture of spectroscopy as transitions between Bohr stationary 

states since Eq. (1.12) is derived from first-order time-dependent perturbation theory in 

which the operators are independent of time and the wave functions are time dependent. 

The Heisenberg picture [3, 5, 11-16, 18-21] of quantum mechanics gives an 

equivalent expression in which the time evolution of the of the system is placed in tlie 

operators, and die quantum states are time-independent. The Heisenberg picture leads 

naturally to a time correlation function; in tliis case, the dipole moment correlation function. 

In the Heisenberg picture, the dipole moment operator v is written as 

where H is the Hamiltonian of the system. By using the Fourier expansion of tlie Dirac delta 

function, Eq. (1.13), and the closure relation [3-17, 20] 

|/>.as 

(1.12) 

/  r  

v{ t )=Qxp( iHt /h )yQxp( - iHt /T i ) ,  (1.13) 

Si/x/i-i. (1.14) 
/ 

Eq. (1.12) can be written in the Heisenberg picture as [5,6, 11,16, 18,21] 



www.manaraa.com

7 

1 
o(<w) = —ji/<'(v(0).v(/)) cxpiicoc). (1.15) 

Equation (1.15) is the Fermi Golden Rule in the Heisenberg picture. Thus the lineshape 

function in the Heisenberg picture is the Fourier transform of the time-correlation function of 

the dipole moment operator of the absorbing molecules. Taking the inverse Fourier 

transform of Eq. (1.15) yields the dipole moment time-correlation functions follows 

For the sake of clarity, from this point on, we will not use a vector notation, and will not 

specify the components of vector quantities such as E, P or v, unless this is essential. 

Let us consider a more general quantum mechanical time-correlation function taken 

at different times 

is an expectation value of products of physical quantities A and B taken at different 

times. C(/,,/2) characterizes the correlation which exists on average between interactions 

occurring at times /, and A. As pointed out earlier, the correlation function C(/,,/2) depends 

on the time difference ^ = T and therefore it is maximum when /•, = ^ (because C(T) 

always peaks at T = 0) and decreases with increasing t\- T, ultimately vanishes as T co 

. The correlation time T is a measure of the time during which, on average, some memory of 

tiie interaction is retained. In terms of die density operator p (which is assumed to be known 

^03 
<v(0).v(O>= do) a{Q})Q\^{-icot) .  (1.16) 

C(/„/,) = <^(/,)5(r,)> (1.17) 
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to the reader, see Refs.[3, 5,6, 8, 11, 14-16, 18-21]), the expectation value of a physical 

quantity A in state \m) is 

(A)  =  Tr{pA}  =  '£{n \pA\n} .  (1.18a) 
n 

Using the invariance of the trace to a cyclic permutation of operators, Tr{ABC} = Tr{BCA} 

= Tr{CAB}, Eq. (1.18a) can be written as 

It 

where {|/7)} is some arbitrary complete orthonormal basis set. Using the relation 

p=^PJni){m\ in Eq. (1.18) one obtains 
m 

= E Z <"! '"X'wMI«) = Z ( f " \  (1-19) 
It  III  m 

Since the quantum mechanical time-correlation function is an ensemble 

average, one can apply Eq. (1.18b) as 

= Y,{n\pAO,)Bit ,) \n).  

Using the Heisenberg representation, CC^pr,) becomes 

Tr{pexp(i/ f t , / f i)A(0)exp(-i / f t , / f i)exp(i/{t , /^i)  
(1.21) 

X 5(0)exp(-////,//i)}-
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Furthermore, according to the stationary condition (correlation function C(/,,^) depends on 

the time difference x) C(f,,/,) can be written as 

C(/„/, )  =  {A{ t , )  B i t ,  )> = </!(/, - I , )  B i t , -  /, )> = {Aix)  5(0)>. (1.22) 

Using the Heisenberg representation, Cit^,t^) becomes 

C(/,,/,) = (A i  r) 5(0)) = Tr{pQxpi iHTfh)  A iO)cxp i - iHT/h)BiQ)} .  (1.23) 

In fact, Eq. (1.23) can be derived directly from Eq. (1.21) by using the cyclic property of the 

trace and the fact that p commutes with H. 

In the classical limit Eq. (1.20) can be written as, given that the trace corresponds to 

an integral over phase space in the classical limit) 

Cit,J,) = j-'jdpdqfip,q)Ait^)Bit,), (1.23) 

where f ip ,c i )  is the equilibrium distribution fonction in phase space [6,22] whose quantum 

mechanical analog is the density operator p as follows 

Tr^exfi-PH)) J-J dpd(ieKp{-/3H^(p,q)) 

where H^ip ,q)  denotes the classical Hamiltonian. 

In view of time-correlation functions central importance in understanding the 

response of physical systems to external perturbation, some of their properties are now 

examined. Several important properties of a one-sided correlation function (time dependence 
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occurs only on the right-hand side v(t) of (v(O)v(O)) follow from the fact that cj{a)) is a real 

quantity. Assuming that C(t) is a one-sided correlation function we have 

a{Q)) = cr(Q)} 

1 7 (1-25) 

—«0 

(where the asterisk (*) denotes the complex conjugate). Upon changing the integration 

variable to -t, Eq. (1.25) becomes 

1 
a{Q)) = fc/rC*(-0 expiicot)  

2 K ^  
(1.26) 

1 * 
= — \d tC '{ - t )  exp( i i y f )  

—Ti 

Comparing Eqs. (1.15) and (1.26), we have 

C(0 = C*(-r). (1.27) 

Since C(t) is a complex function (by Eq. (1.27)), it can be broken into real and imaginary 

parts 

C(0 = C'(0 + /C"(0 (1.28) 

it follows from Eq. (1.27) that 

C'(0=C'(-0 (1.29a) 
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and 

C"(0 = -C"H). (1.29b) 

Thus the real part of the correlation function is an even function of time while the imaginary 

part is an odd function of time. 

Quantum mechanical correlation functions are generally complex quantities and 

have both even and odd parts as a function of time [3-6, 10-13, 18]. If the correlation 

function is obtained by a cononical Boltzmann ensemble, then the real (even) and imaginary 

(odd) parts are related to each other. Using the following relationship (which comes from 

where /"(cy) is imaginary part of the susceptibility ^(<y) and P = (kT)"', one can see that 

given diat is an odd function. Utilizing Eq. (1.31), one can show that the imaginary 

part of the quantum mechanical correlation fiinction, C"(t), can be determined by 

differentiating the real part, C'(t), [23-25] 

Eq. (6.9b) in Ref. [3]) 

X"{q}) = ^[l -exp(-/3/zfij)]o(cy), 
n 

(1.30) 

a{co) = a{-co)Q\p{-/^t iQ}) (1.31) 

C'(r) = -Taniifih / 2)4]C'(0. 
dt  

(1.32) 

In the liigh temperature limit, phll«l ,  Eq. (1.32) can expanded to give 

C"(0 = -0/2)4c(r). 
c t  

(1.33) 
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Thus at high temperatures the imaginary part of the correlation function has insignificant 

contribution, which goes to zero in the classical limit (h -> 0). Therefore, the imaginary part. 

C"(t), is purely quantum mechanical. 

Using the symmetry properties in Eq. (1.29), one can eliminate the negative times 

from the integration in Eq. (1.15). For example 

Eq. (1.34) is convenient for numerical calculations because it limits tlie integration to only 

positive times. 

Although the calculation of correlation functions for all times is a difficult 

dynamical calculation, one could do a Taylor series expansion of the correlation fiinctions 

about the initial time; see Refs.[6, 10, 12,13, 22] for details. For further discussions of time-

correlation functions in spectroscopy, the reader is referred to refs.[4, 12, 13, 15, 18,21.23-

1 
a(ca) = — \dt C(0exp(/fi;0 

lir •' l7t \  

I I 
= — \dt C(-r)exp(-/(i;0 + — C(r)exp(/£yO 

0 0 

. J3 . » 

= — \dt C*(r)exp(-/6;0 + — \dt C{t)Q\^{icot) 

*(0 exp(-/a;r) + C(r) exp(/£yr)] 

1 
Re — f c/r C(0 exp(/tyO-

^0 

(1.34) 

31]. 
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1.1.3 Linear Optical Response Function 

Practically all physical experiments involve the application of an external 

perturbation or force /(/') on a system initially in equilibrium in order to elicit a response, 

y{t). Such is the case, for example, when an electric field induces an electric dipole moment 

in atoms or molecules. If the perturbation is sufficiently weak, the relation between y{t) and 

f{t') is linear. As the perturbation grows in magnitude, the assumption of linear dependence 

becomes less tenable and ultimately must be replaced by a non-linear dependence. The 

response then no longer depends on the first power of /(/') but rather on higher powers or, if 

several perturbations are acting sequentially, on their product. Specifically, it is assumed that 

f{i') is the electric field E{r/), and y{t) is tlie polarization P{r,t) (response of the system) 

a rising firom a redistribution of charges within the system exposed to the electric field. 

We begin with the linear case to introduce the general formalism of a system 

responding to an external perturbation. A non-local spatial dependence of the response at a 

point r depends not only on E{r,t') but also on £(r',/') where E{r',t') is the perturbation at 

otlier points r'. Here we will not consider the spatial dependence of the response function 

under the local spatial dependence assumption, i.e., the response at a point depends only on 

the force (the electric field) acting on the same point and no other [3]. The general relation 

between £(r,r') and the response to first order, may then be written as 

where t is tlie time the field is applied and is the first order response function (also 

called the after effect or Green's function; it is an intrinsic property of the physical system 

and is independent of the applied field. (Equation. (1.35) is known as Kubos' formula [4, 8, 

12]). In general, tiiere may be a delay betweea die applied field and the polarization induced 

(1.35) 
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by the field. The response function represents a time lag of the system. If the system can 

respond instantaneously to £(r,/'), then is a delta function. Ordinarily, however, 

the system lags behind and is monotonically decaying function of time. 

The lower limit in the integral has been set equal to -oo to allow £(r,/') to build up gradually 

from the distant past. The response function 5'"(/,/') depends on the difference t-t' rather 

than on t and t' separately. Equation. (1.35) then assumes the form 

I  
P '"(r, r ) =  E {r , t ' )d t '  

(1.36] 

= {^ ' " ( z" )  E {r , t+  T)  dr .  

Next the linear optical polarization will be calculated in terms of the linear response function, 

which was first developed by Kubo [4, 8, 12]. Although Mukamel has done extensive work 

on calculating the response flinctions[3], his formalism will not be adopted in this chapter 

because it involves Liouville space notation. Therefore, the linear optical polarization will be 

calculated in Hilbert space, and the resulting response function will be compared to 

Mukamel's result [3]. 

One can start calculating the optical polarization by assuming that the system is in 

thermal equilibrium 3Xt=-t^ (later taken to be -oo) with respect to its Hamiltonian and its 

state is 

(1-37) 
rr{exp(-;5i^o)} 

When tlie perturbation H\t) is applied to die system at / =^0, the system becomes in non-

equilibrium state for r > Tq that can be described by the quantum Liouville equation in the 
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Schrodinger picture [3-21] 

4p(')= 
an n 

(1.38) 

where the total Hamiltonian of the system at r > /„ is 

(1.39a) 

where 

//•(0 = -v E{v j )  (1.39b) 

It turns out to be more convenient to transform Eq. (1.38) to the interaction picture[3-21] as 

where ^t)  and H'{t)  are the density and the interaction Hamiltonian operators in the 

interaction picture. For example, the density operator in the interaction picture is 

Eq. (1.40) is quantum Liouville equation in the interaction picture. Of particular importance 

here is the appearance in the commutator of the perturbation Hamiltonian rather than the total 

Hamiltonian in Eq. (1.41). 

Equation (1.40) is a homogeneous first order ordinary differential equation that can 

be converted to an integral equation starting with the initial condition ^/) =p(fQ) as follows: 

4m=-7mn,m 
ct 11 

(1.40) 

p{t)  QXTpi-iHait-tJh) (1.41) 
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(1.42) 

Successive substitutions of Eq. (1.42) in Eq. (1.40) generates the pertubative expansion of 

p(0 [3, 11. 18,21,30-33] 

where 

with 

yo(r)=p'°'(/)+^"(r)+p^''(0 + ---y^"'(0+ 

yo'°'(f)=yc<r„)=p(^o) (l-44a) 

= ),/!('.)], (1.44b) 

]dt, \di ,  p/ ,  
'o '» 'u 

x[^(r,),[^(f,), 

(1.44c) 

(1.44d) 

(1.45) 

These equations enable us to make successive approximations to p{[) when pCr,,) =p(^o) is 

known. They have a wide range applicability in time-dependent perturbation theory and play 

a fundamental role in the description of linear and nonlinear spectroscopy. For die sake of 

convenience we shall assume that the operators are in the interaction picture without using 
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on top of the operators, unless this is essential. In terms of the density operator, the 

optical polarization P(r,t) can be written as the expectation value of tlie dipole moment 

operator as 

P(r , t )  =  Tr{vp( t }} ,  (1.46) 

substituting Eq. (1.43) in Eq. (1.46), one obtains 

P(r,/) = rr{v [yD*°'(r)+p^"(/) + /-'(0 + -+/0*"'(0+-]} 

= Tr{v  +  7>{v  ̂ ' " (O}  +  

= /'""(r,0 + /""(r,r) + /"-'(r,0+---+/'""(r,0+-
(1.47) 

It is assumed that P^°\r , t )  vanishes at thermal equilibrium. Clearly, from Eq. (1.47), 

P^"\r , t )  =  Tr{v  p ' " \ t ) } .  (1.48) 

Therefore with Eq. (1.44b), one obtains 

P'"(r,r) = rr 
•  I 

. t l  

One can set - -oo and rewrite Eq. (1.49) using Eq. (1.39b) as 

(1.49) 

P^''(r,0 = rr| V [H'(r,),p(-co)] 

. t 

= rff, Tr{v [v((,),^-«:)]) £(r,/,) 

(1.50) 
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upon invoking the cyclic property of the trace and the fact tliat commutes with 

Eq. (1.50) becomes 

P"'(r,0 = -7|^/r, Tr{[v(r,),p(-<»)]v} E{rj^) 

= -j \ dt^ Tr([v,v(r,)]/o(-co)} (1.51) 

= "7 ([v,v(r,)]p(-co)>£(r,/,) 

Comparing this expression with Eq. (1.35) or Eq. (1.36), it is seen that the linear response 

function is of the following form 

S"'(0 = -|<[V, V(()W-00)) 
n 

= 7<[v(t), v]p(-oo)> 
(1.52) 

n 

= -7lmJ(/'), 
h 

where 

^(O = (v(t)vp(-co)> (1.53a) 

and 

J"(0 = <vv(t)p(-co)>. (1.53b) 

J(t) is the dipole moment two-point time-correlation function. The response fimction defined 

in Eq. (1.52) is identical to Mukamei's result, see Eqs. (5.18)-(5.20) of Ref. [3]. Note that 
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P'"(r,0 in Eqs. (1.48)-(1.52) contains two dipole moment operators; Eq. (1.48) indicates 

that P""(r./) will have n + l dipole moment operators. 

This concludes the presentation of the basic description and derivation of the linear 

optical response function. Non-linear response functions will be discussed in Chapter 2. In 

the next section the harmonic interactions that can take place when nuclear (vibrational) 

motions (e.g., phonons in crystals) couple to the electronic transition of a chromophore in a 

condensed phase will be examined. 

1.2 Electron-Phonon Coupling 

Normally optical lineshapes for condensed phase systems are determined by the 

nature of electron-vibration coupling. In the harmonic approximation, phonons (in a solid 

environment) can couple to the electronic transition of the chromophore linearly, by linearly 

displacing the upper potential energy curve of the excited electronic state \e) relative to the 

equilibrium nuclear position of the ground electronic state |^>, and quadratically ,by 

changing the curvature of the upper potential energy curve. This, in turn, changes the force 

constant, on account of the electronic charge redistribution, wliich leads to changing tlie 

frequency of the vibrational mode upon electronic excitation. Figure LI shows a schematic 

representation of the potential energy curves of the two electronic states based on the 

harmonic approximation. The diagonal force constant in tlie excited state gives rise to 

diagonal quadratic coupling, while the off-diagonal force constant rotates tlie normal 

coordinates of the excited electronic state relative to those of the ground state. This off-

diagonal quadratic coupling is the Duschinsky effect [34-36] and is important when 

Herzberg-Teller coupling (strong dependence on the nuclear coordinates) [34] cannot be 

neglected [35]. Thus the Duschinsky effect can be neglected for a chromophore that 

possesses strongly allowed electronic transitions in the Condon approximation (weak 

dependence on the nuclear coordinates) since Herzberg-Teller coupling seeme to be the most 
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e> 

Q 

|g> 

Figure l.l Schematic representation of changes of the upper adiabatic potential energy curve 

relative to the lower one due to both linear and quadratic electron-phonon 

coupling upon electronic excitation. is the vertical (Franck-Condon 

principle) transition frequency and Q the adiabatic electronic energy gap. wliich 

is defined as the distance between the minima of the potential energy curves. It 

indicates that the upper potential well has changed in two ways with respect to 

the lower one upon electronic excitation; it is displaced to the right and it has a 

different curvature (different force constant) which changes the frequency for tlie 

vibrations (phonons) in the excited electronic state. 
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important requirement for the Duschinsky effect [36]. Note that the Duschinsky effect can 

only be applied when two or more modes are present. Here we shall consider only the linear 

(linear displacement) and diagonal quadratic electron-phonon coupling (frequency change). 

Consider absorption from the ground electronic state (g) to an excited electronic 

state (e) and let co" and co' be, respectively, the ground and excited state frequencies of a 

vibrational mode. Let q be the dimensionless normal coordinate of this mode for the ground 

electronic state. It is related to tlie mass-weighted coordinate, Q, by q = (M"//})'''-Q. 

Similarly, we define d as the dimensionless translational displacement between the potential 

energy minima of the two electronic states. For linear and diagonal quadratic electron-

phonon coupling tlie excited state vibrational Hamiltonian is given exactly by 

-\)q- +2r- qd + r-c{-] + tiQ ,  

where r = (coVco"). JiQ is the adiabatic electronic energy gap. The /-"c/'term multiplied by 

hco"/2 is die optical reorganization energy. Thus, 

=Q + (£>"r-d-12, (1.55) 

where Qy is the vertical (Condon) frequency gap. In Eq. (1.54), Hg is the vibrational 

Hamiltonian for the ground state: 

Hg=n(o"ia' 'a-hl/2),  

with a"^ and a the raising and lowering operators for the ground state, i.e. q 

For a multi-mode system one need only sum Eq. (1.54) over all modes. 

(1.56) 

= 2-l^(a+ + a). 



www.manaraa.com

22 

The excited state vibrational Plamiltonian can be approximated fnr r > 0.7 as follows 

(see Chapter 3 for details) 

«/ico' 
^ I 

+ (,2-r- ')d(,a* +a)/^*(2-r- ')d^ 12 + hd 
(1.57) 

It is the elimination of a"^" and a- that simplifies tremendously evaluation of the linear and 

non-linear response functions. An approximate electronic dipole moment correlation 

function for both linear and diagonal quadratic electron-phonon coupling for < 30% 

frequency change, the linear absorption lineshape function, and the resulting Franck-Condon 

(FC) factors will be derived using the excited state Hamiltonian in Eq. (1.57) and discussed 

in Chapter 3. 

So as to be able to rest on solid grounds we shall proceed from the simplest electron-

phonon coupling cases to successively more involved ones. Let us consider first the linear 

coupling case and the relevant features such as tlie reorganizational energy, linear 

displacement, absorption lineshape function, and FC factors. 

1.2.1 Linear Coupling 

Linear coupling is considered starting witli the well-known expression for the 

electronic dipole moment correlation function without a damping constant, (which 

we will obtain in Chapter 3) to illustrate the spectroscopic features that accompany linear 

electron-phonon coupling. J(t-, T), for a multi-mode system reads 

=cxp[-g(r,T)-iQj],  (1.58) 

where the lineshape function 
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g(';r)=X«,(';n, (1.59a) 
/ 

with 

gjit;T) = 5^[coth(>fifi(3;,)(l -cos((iJ/) + iSin{ci)^t) - ico^t] (1.59b) 

and the vertical transition frequency, obtained by setting co' = a" = co^ in Eq. (1.55), (see 

Figure 1.2) 

The first term, Q, in Eq. (1.59c) is the adiabatic electronic energy gap, which is defined as the 

distance between the minima of the potential energy curves of the two electronic states (see 

Figure 1.2). The second term in Eq. (1.59c) represents the optical reorganizational energy 

Z- = with S'j = dj'/2 being Huang-Rhys factor and QJ^ is the frequency of mode j. 

Figure 1.2 illustrates the Franck-Condon principle at the top for different cases of linear 

displacement and the corresponding absorption spectra. It also shows that the only change in 

the upper potential energy curve is its nuclear separation (no curvature change) due to only 

linear coupling. Huang-Rhys factor, 5^, is a dimensionless coupling strength parameter that 

measures the linear displacement of upper potential energy curve, which is a consequence of 

the linear interaction between a chromophore (electronic transition) and the surrounding 

environment (phonons). For example, in Figure 1.2 (a), for Sj = 0, the chromophore is not 

linearly interacting with die phonons and the absorption spectrum is purely electronic. 

(However, there might be higher-order interactions, e.g., quadratic or anharmonic, taking 

place, as will be discussed later.) When the phonons couple to die electronic transition is 

greater than zero. Therefore, the more the phonons coupling to die electronic (0,0) transition 

(ZPL), the larger 5j (more interaction between the chromophore and its environment) 

becomes as shown in Figure 1.2 (b) and (c). For strong electron-phonon coupling (Sj » I), 

=Q + S^.ci),. (1.59c) 
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-J a. S=0.50 
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Figure 1.2 Potential energy curves illustrating the basis for Franck-Condon principle and their 

corresponding absorption spectra calculated using Eq. (1.60) with o} = 50 cm , 

/j = 5cm"' and T = 0 K. The upper potential energy curve lies directly above the 

lower one (d = 0), the spectrum is purely electronic (e~^ = I) in (a), is slightly 

shifted to the right due to S = 0.50 (weak coupling) where the ZPL is still the 

most intense band = 0.60 (1 - e'^ - 0.40)) in (b), and with greater linear 

displacement due to S = 2 (strong coupling) where (2,0) transition is the most 

intense one and the ZPL is getting weaker =0.13 (1 -e~^ = 0.87)) in (c). 
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the (0,0) transition (zero-phonon line (ZPL)) intensity becomes too weak to be observed and 

the multi-phonon transitions (phonon sideband (PSB)) will dominate the absorption profile, 

as in Figure 1.3. Next, we will demonstrate the above discussion by taking the Fourier 

Uransform (FT) of Eq. (1.58) to obtain the linear absorption lineshape function in the 

frequency-domain from which we can deduce FC factors. 

FT of Eq. (1.58) for mode j is (Q = 0) (Appendix B of Chapter 3) 

where = Sj csch((3AcOj/2) and [^(Zo) modified Bessel functions and the integer m 

signifies the net change in the number of phonons (creations and annihilations) associated 

with the phononic transitions, but is not a quantum number. Equation (1.60) is not very 

spectroscopically insightful due to the presence of Bessel functions and the temperature 

dependence. However, we can work at a simpler level in the limit where T ̂  0 K, then 

a{Q)) becomes 

 ̂Q}cp{mj3nQ)j / 2) S(co - mQ)j), 

(1.60) 

o(fij) = exp(-5'.)y 5{co-mQ)j), 
ml 

(1.61a) 

and one can write Eq. (1.6la) as 

a(G>) = exp(-5,) (5[iy-0.G>,)+exp(-5,)y - 3{(o-mco.). (L6Ib) 

This form will simplify the discussion of FC factors for the cold transitions below. Since we 

are in the low temperature limit, the quantimi number of the initial state for the absorption 
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transition is zero, m is tlie final state quantum number. The presence of a delta function in 

Eqs. (1.60) and (1.61) implies that the (0,0) transition (no change in the number of phonons) 

occurs at 0) = 0 and the multi-phonon transitions occur at c0 = mc0y For instance. Figure 1.2 

(b) is an absorption spectrum with co = 50 cm"', it shows that the (0,0), (1,0), (2,0), (3.0) 

transitions appear at co = 0, 50,100, 150 cm"', respectively. The first term in Eq. (1.61b) 

describes an optical electronic transition without creation of phonons and, therefore, it 

represents the zero-phonon line (ZPL). The second term in Eq. (1.61b) describes the phonon 

sideband (PSB). The mth term represents a phononic (vibrational) transition which involves 

a creation of m phonons. Note that since T = 0 K, annihilation process of phonons does not 

occur. 

The first term in Eq. (1.61b) dictates that the FC factor for the ZPL is 

which indicates that when Sj is large, the integrated intensity of the ZPL is relatively small. 

The second term in Eq. (L61b) shows that the FC factors for the 0 ̂  m (m > I) transitions 

are 

K0|0)|- = exp(-5,), (1.62) 

l(/w|0)|- = exp(-5,)5;7m!. (1.63) 

Using Stirling's approximation [37], Eq. (1.63) can be approximated as [38] 

|<w|0)i-« exp(-5'^.)exp[-m(hi(2m Id] )  -1 ) ] ,  (1.64) 

Eq. (1.64) has a maximum at m = Sj-. For example, when S-^ = 1, then the 0 1 transition 

will be the most intense band in the spectrum, as evident firom Figures 1.2 (c) and 1.3. But if 
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lu l l  

S=3 

i l l .  

jjiUl 

S=5 

l i l l i l .  ,  

ijli 

S=6 

1111 uili . 
0 200 400 600 800 

Wavenumbers (cm*') 

Figure 1.3 Examples of strong linear electron-phonon coupling where the multi-phonon 

transitions dominate the absorption profile. Parameters are the same as in Figure 1.2 but 

using diJBferent values of S. As S increases the ZPL intensity gets weaker where the most 

intense transition is the one that creates number ofphonons equal S (e.g., for S = 3, 5, 6, 

(3,0), (5,0), (6,0) transitions are the strongest ones, respectively). Note the ZPL intensity 

diminishing for S =5 ~ 0.007) and 6 = 0.002) and the spectrum is approaching a 

Gaussian distribution in accordance with Eq. (1.57). 
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5'j< 1, then the ZPL will be the most intense band in the spectrum, as in Figure 1.2 (b). It is 

interesting to point out that Eq. (1.63) is the Poisson probability distribution, Pim), and 

therefore 

00 a  H I  

£exp(-5,.) ' =1. (1.65) 

An important property of the Poisson distribution is that as 5j gets very large, it becomes a 

Gaussian distribution (see Figure 1.3) [39] as 

gxp[-(m- Sj)' I2S;] (1.66) 

Equation (1.66) clearly shows that the maximum of the absorption profile is at m = as can 

clearly be seen from Figure 1.3. The other extreme is when Sj ->• 0 (the adiabatic potentials 

are identical), then the absorption spectrum is a <5(aj). In this case, the phonons are 

completely decoupled from the electronic transition, and do not show up in the spectrum (see 

Figure 1.2 (a)). 

Let us compare our FC factor results with those that were first calculated by Huang 

and Rhys [40] (1950) and Pekar [41] (1950) using the overlap integrals of the simple 

harmonic oscillator wave functions. FC factors for linear coupling are [38] 

|<m|n>|'=exp(-Sj)-2^S;"-"'[ir"'(Sj)]', ii>in (1.67) 
mi 

where m and n denote the quantum numbers for the final and initial vibrational states, and 

4"'""^ are the associated Laguerre polynomials. Using Eq. (1.67), the FC factors for the 0 

m transitions are 
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|<mlO)|^ = sxp(-S,)-i-S/""(C'(S/)f. mSO (1.68) 
m l  

but when (Sj) = 1, then Eq. (1.68) is identical to Eq. (1.63). The FC factors in Eq. (1.67) 

are temperature independent, for temperature dependent FC factors see Eq. (13) of Ref [42J. 

In summary, it has been shown, via the absorption lineshape and FC factors, that 

when S < I the ZPL dominates the absorption profile, and when S » 1 the PSB is the 

dominant. Therefore, one can conclude that Sj is the most important quantity in the linear 

coupling approximation, and it gives rise to the PSB and its associated ZPL. 

1.2.1.1 Lorentzian Lineshapes 

To generate single-site absorption spectra, the delta functions in Eq. (1.61a) need to 

be replaced with normalized lorentzians such that all bands in the spectrum have a fwhm of y 

j. This results in 

CO c y n n 
«^^y) = exp(-5^)X-7 7 \ 7  . ^ , 2 ^  ( 1 - 6 9 )  

m l  { c o - m o j j )  111=0 

and will enable us to see the structure of the absorption profile, i.e., Franck-Condon 

progressions, see Figures 1.2 and 1.3. Equation (1.60) is unphysical because it implies tliat 

the lifetimes of the excited electronic state and the vibrational states are tlie same. This 

problem will be resolved in Chapter 3. However, using Eq. (29) of Chapter 3, physical 

single-site absorption spectra can be generated where the ZPL carries a width of ygi (fwhm) 

and the progression members carry widths given by 

iJyvhm)„,=/^f+m/j, m>l (1.70) 



www.manaraa.com

30 

as shown in Figure 1.4. Of course, at T = 0 K. pure electronic dephasing (TV) processes do 

not take place and, therefore, tlie above simply represents the excited electronic state 

lifetime (7^). 

[f the sample temperature T 56 0, processes of creation and annihilation of phonons 

take place; more phonons will be thermally populated and, as a result, more multi-phonon 

transitions occur. Equation (1.60) shows that tlie ZPL FC factor is exp[-5'y coihi/Sfico Jl)] 

and that of the PSB is (l-exp[-5V coth(/31^za;^ / 2)]). Tliis thermal population leads to 

electron-phonon scattering (elastic scattering, i.e., no energy change) and, in turn, causes a 

phase shift [5, 14, 16, 17] of the excited electronic state wave-function which manifests itself 

in the absorption spectrum as a spectral broadening of the ZPL. This spectral broadening is 

called pure dephasing and depends on temperature such that it increases as temperature 

increases For example, as the temperature increases, more phonons are thermally populated, 

which leads to more scattering of the phonons at the impurity center and results in a greater 

phase shift {pure dephasing). Thus, it is reasonable to assume that tlie total homogeneous 

line width of the ZPL is determined by total dephasing time T, of the optical transition: 

i = _ L + i  ( 1 . 7 1 )  
r, IT, t: 

where T, is the excited electronic state lifetime and is the pure dephasing tune. 

In order to produce temperature dependent single-site absorption spectra, tiie delta 

functions in Eq. (L60) need to be replaced with normalized lorentzians such that all the 

bands in the spectrum (including the ZPL) carry /j (fwhm) width. Again, this is unphysical, 

vide infra, but it allows us to clearly see how the structure of a single-site absorption profile 

changes as one raises the temperature. For example, if the sample is heated the integrated 
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Figure 1.4 Single-site absorption profile calculated with Eq. (29) of Chapter 3 with S = 0.50, 

= 50 cm'', = 30cm"', and = 5cm'' at T = 0 K. PSB shown as a broad 

band with its associated sharp peak, the ZPL due to linear electron phonon 

coupling. 
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intensity of tiie ZPL decreases and tlie intensity of the PSB increases. This is illustrated in 

Figure 1.5 for the parameters used for Figure 1.2 (b) (S= 0.50, T = 0 K, tUj = 50 cm"', = ^ 

cm"') but calculated at T = 30 K and 120 K. Figure 1.5 shows the rise of the hot bands, the 

intensity loss of the ZPL, and the PSB intensity increase due to the temperature increase. 

However, the integrated intensity of tlie whole profile does not depend on temperature (in the 

Condon approximation) [43-45]: 

+ //.v/,(7') = constant, (1.72) 

where is integrated intensity of the ZPL and //..vb(7') is that of the PSB. Thus, Eq. 

(1.72) tells us that the lost intensity from the ZPL has been transferred to the PSB. Assigning 

the same width to all the bands is unphysical because it does not take into account pure 

electronic dephasing. Furthermore, the homogeneous width of the ZPL is independent of the 

phonons relaxations. The same width has been assigned to all the bands here only to simplify 

explaining what physically takes place when one raises the temperature. However, this 

problem will be resolved (see Eq. (27) of Chapter 3) with examples and applications given in 

Chapter 3. 

In liglit of the above, it is seen that in the linear coupling approximation ZPL gets 

very weak as temperature increases, and is hardly observed for S » 1 at T = 0 K (see Figure 

1.3). Therefore, one can conclude that only the PSB is governed by the linear coupling 

approximation. Furthermore, electron-phonon scattering causes pure electronic dephasing 

(optical coherence loss) and if S = 0, there will be no dephasing according to the linear 

coupling approximation. It will be shown below that this is not physical unless higher order 

coupling terms are taken into account. Next the diagonal quadratic electron-phonon coupling 

is discussed. 
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Figure 1.5 Single-site absorption spectra same as in Figure 1.2 (b) at finite temperatures 

calculated using Eq, (1.52) by replacing the delta functions with normalized 

lorentzians. Note the presence of the hot bands on the low energy side, the 

intensity loss of the ZPL, and the PSB intensity increase as the temperature 

increases, and 0.18 fori = 30 and 120 K). The intensity lost 

from the ZPL is transferred to the PSB intensity according to the conservation 

law. 
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1.2.2 Quadratic Coupling 

Figure 1.3 indicates that when S-^ increases the PSB predominates the entire 

absorption profile while the ZPL contributes insignificantly. Therefore, we can conclude that 

the linear coupling approximation is not sufficient for studying the homogeneous broadening 

of the ZPL (pure electronic dephasing). While linear electron-phonon coupling does not 

contribute to pure electronic dephasing, quadratic coupling does, vide infra. In other words, 

quadratic coupling can be neglected when considering the PSB, but not when considering the 

ZPL [43-45]. This is reminiscent of the three important findings by Small and co-workers 

when studying the ZPL dynamics in polymers and glasses [46,47]. The first finding was that 

the exchange coupling mechanism [48, 49], which originates from quadratic electron-phonon 

coupling, often accounts for pure electronic dephasing at higher temperatures. (Above about 

15 K the pure electronic dephasing becomes dominated by quadratic electron-phonon 

coupling, which gives rise to exchange coupling mechanism involving a low frequency 

pseudo-localized vibrational mode associated with the probe molecule.) Tlie second finding 

was that the phonon modes exhibit negligible linear electron-phonon coupling (which means 

if we limit our system to only linear coupling, there will be no optical coherence loss, vide 

infra). The last finding was that the linearly coupled modes contribute appreciably to the 

PSB and negligibly to the ZPL. As a result. Small and co-workers [46, 47] concluded that 

neglecting quadratic coupling in liquids is questionable. In the limit where 0, gj{t;T) 

of Eq. (1.51b), Eq. (24) of Chapter 3, or the one generated by the multi-mode Brownian 

oscillator (MBO) ->• 0 [3], Thus, when linear coupling vanishes {Sj-> 0), there is no optical 

coherence loss. This is unphysical as recognized by Fleming and co-workers [50]. However, 

inclusion of quadratic coupling leads to optical coherence loss (even when iS'j« 0). 

Of course, quadratic coupling contributes to PSB. However this coupling can never 

considerably increase the intensity of a PSB [44,45] because FC factors dictate that quadratic 

coupling contributes to the phononic transitions with creation and armihilation of an even 
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number of phonons. Since the FC factors for any n m transition for only quadratic 

coupling do not seem to be available in a closed form, they are only given here for the 0 -> m 

(cold transitions) transition [38]: 

K'«10)|- = 2 
(w?-l)!! Je fa}"~a)'^"' 

m \ \  (1+0) CO" + Q}' 

= 0 

m = even 

m s odd 

(1.73) 

where © = Q)"ICCI\ Note that the final vibrational state m must be even due to the definite 

parity of the harmonic oscillator eigenstates (unlike the linear coupling), otherwise the 

overlap integral will be zero because the integrand is odd. It would be more instructive if we 

write out the FC factor for the ZPL, 

= (1.74) 
(1+0) 

which means that the integrated intensity of the PSB generated by the quadratic coupling is 

(l - 2-v/0/(l + 0)). Recall, only even transitions contribute to that PSB. For instance, if co"= 

30 cm"' and co' = 25 cm"', then FC factors for (0,0), (2,0), (4,0) transitions are 0.994. 0.0060, 

0.000056, respectively. In general, [(«y"-cy' y(af'-k-co')]"' for m > 2 can never exceed unity. 

Thus, the ZPL dominates the entire profile under consideration (e.g., hole-burning, photon 

echo, or linear absorption) and the PSB contributes negligibly to that profile. Therefore, the 

contribution of quadratic coupling to the PSB, as a rule, is negligible [43-45]. 

The problem of handling quadratically coupled modes will be treated in Chapter 3 

where pure electronic dephasing is taken into account and because of the approximation 

made (Eq. (1.57)) resuhs are obtained that are valid for up to about 30% change of fi:equency. 

Furthermore, the only transition is seen at T = 0 fC is the (0,0) transition (ZPL) but as the 
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temperature increases only the sequence transitions start to arise (e.g., (1,1), (2,2), etc.), see 

Figures 2 and 5 of Chapter 3. Figure 5 of Chapter 3 shows that the quadratic coupling shifts 

and thermally broadens the ZPL. 

1.2.3 Linear and Quadratic Coupling 

Modes that are both linearly and quadratically coupled are infrequently encountered 

and, for completeness, some of the most relevant features diat may arise in spectroscopy will 

only be briefly pointed out. The reorganizational energy, X,, in harmonic systems whose 

modes exhibit both linear and quadratic electron-phonon coupling is equal to SQ)''ICO" (see 

Eq. (1.55)), which will lead to a different vertical ttansition firequency (the sum of the 

adiabatic gap and X, as shown in Eq. (1.59c)) from that one for the linear coupling case. The 

fact diat X for botli linear and quadratic coupling case has changed is a direct signature that 

FC factors will change accordingly, and be different from the linear coupling ones. This is 

because of the following. As can be seen from Figure 1.1 the vertical line, starts from 

the equilibrium nuclear separation (where the probability distribution function is maximum) 

of tlie initial vibration state and reaches the most probable vibration state in the upper 

electronic state where this probability is larger at the classical turning points. Since FC 

factors tell us which transitions are the most probable ones (strongest transitions) in a 

spectrum, they must change in accordance with (Franck-Condon principle) because they 

both lead to the most probable transitions. Hence, the upper vibrational state that die vertical 

line intersects will be the most intense member of the progressions. Furthennore, die 

centroid (X) of the PSB will change as well causing all the absorption spectrum peaks to be 

shifted to the left (co'-co")/2 cm"'. The fact that we have two different fiandamental 

frequencies (co' and m"), at high enough temperature, the bands attributed to co", its multiples, 

assuming ©' < co", and the multiple of the difference of the two fundamental frequencies start 

to appear and this will lead to non-constant splittings between the bands, unlike linear 

coupling. The difference of the two fundamental frequencies and its multiples give rise to 
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quantum beats in time-domain, whicii will be discussed in Chapter 2 with examples given in 

Chapter 4. To this end we just give the FC factor for the ZPL [38, 51-53,], 

K0|0>|- = 2/^"' exp(-2Sffl7(a"-Ki)')) (1.75) 
( O )  + 0 ) )  

In Chapter 3 approximate FC factors will be obtained, which are adequate up to ~ 30% 

frequency change. They are derived from the Fourier transform of J(t;T) obtained from our 

approximate excited state vibrational Hamiltonian. For more extensive details on FC factors 

for both linear and quadratic electron-phonon coupling with and without anharmonicity see 

Ref. [38]. 

1.3 Dissertation Organization 

This dissertation contains the candidate's original work on theoretical development 

of temperature dependent linear and non-linear spectroscopy for condensed phase systems. 

Chapter I provides a general background on classical and quantum correlation functions, 

optical linear response functions, and harmonic electron-phonon coupling and the relevant 

Franck-Condon factors. Chapter 2 gives a background on applying optical non-linear 

response functions approach to photon echo spectroscopy. Chapter 3 and Chapter 4 are 

submitted papers on optical linear and non-linear response flmctions for condensed systems 

with linear and quadratic electron-vibration coupling. Chapter 3 contains an approximate 

linear response flinction for both linear and quadratic electron-phonon coupling, its associted 

Franck-Condon factors, and a linear response function that describes the pure electronic 

dephasing (homogeneous broadening of the zero-phonon line) for only linearly coupled 

modes. Chapter 4 is an extension and applications of the formalism developed in Chapter 3 

to non-linear spectroscopy (photon echo). Concluding remarks are given in Chapter 5. Three 
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appendices are given at the end of the dissertation: Appendix A provides a spectral analysis 

of the multi-mode Brownian oscillator model. Appendix B gives a mathematical proof of the 

equivalence of Eq. (27) of Chapter 3 to Eq. (17) of Hayes et al [42]. Derivation of Eq. (29) 

from Eq. (27) of chapter 3 is given in Appendix C 
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CHAPTER 2. NONLINEAR OPTICAL SPECTROSCOPY FOR CONDENSED 

PHASE SYSTEMS 

2.1 Introduction 

Linear optical experiments cannot extract structural and dynamical information 

about molecular systems in condensed phases because they are usually hidden underneath a 

broad inhomogeneous distribution due to a variation in transition frequencies for different 

molecules, as a result of different local environments. This is typical for linear spectra in 

solutions, liquids, glasses, proteins, polymers and molecular crystals. However, non-linear 

optical tecliniques such as hole-burning [1-7], photon echoes [8-31], pump-probe absorption 

[8-10, 32-40], and fluorescence line narrowing [41-46] can extract this information by 

eliminating the inhomogeneous broadening. Tliose techniques require going to higher order 

optical response functions, i.e., non-linear response functions. 

In hole-burning and fluorescence line narrowing techniques, the elimination of 

inhomogeneous broadening involves a selective narrow band excitation of a subgroup of 

molecules, and then following its subsequent dynamics by measuring the change in the 

absorption of a probe (hole-burning) or the spontaneous emission (fluorescence line 

narrowing). Only a small fraction of molecules within the inhomogeneous distribution is 

selectively probed in this case resulting in a partial elimination of the inhomogeneous 

broadening effect. On the contrary, the pulsed excitation process in photon echo 

spectroscopy is non-selective and the entire inhomogeneous distribution is excited. The 

ability of photon echo technique to eliminate the inhomogeneous broadening from tlie signal 

is the result of two propagation periods in which the inhomogeneous broadening has an 

opposite effect (the depahsing in the first period is followed by rephasing in the second) 

which exactly cancels. 
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In light of the above, hole-burning and fluorescence line narrowing techniques are 

based on frequency selection of chromophores by preparing a small homogeneous fraction of 

molecules (chromophores). Therefore, both emitted light and burned hole reflect a spectral 

width close to that in the single-site absorption/fluorescence spectra. On tlie other hand, 

photon echo spectroscopy is a kinetic type of spectroscopy. The photon echo methods are 

based on the temporal evolution of the chromophores dipole moments. This can be more 

easily seen using the wave fijnction approach or the Bloch vector model [13, 15], vide infra. 

The importance of optical polarization in spectroscopy was established in the 

previous Chapter. Since optical polarization is the only material quantity tliat appears in 

Ma.xweirs equation (Eq. (1.1)), it carries a complete microscopic information about the 

system. It was also pointed out diat the non-linear third-order polarization, f'^'(r,/). is a key 

quantity in die interpretation of 4-wave mixing experiments (4WM) such as photon echoes, 

fluorescence line narrowing, hole-burning, and pump-probe spectroscopies. For example, 

when three incident pulses are applied to a sample, they interact with it to generate a new 

field (e.g., echo field in photon echo measurements). Here we limit the application of third-

order polarization, which is expressed in terms of non-linear third-order response function as 

/'"'(r,r) was expressed in terms of linear response function 5^'^(0 in Chapter 1. to photon 

echo spectroscopy. More extensive applications of non-linear third-order response function 

in non-linear spectroscopy can be found in [8]. 

2.2 Non-Linear Optical Response Function Description of P^^Ur.t) 

The non-linear third-order response function govemes all the non-linear optical 

measurements. Equations (1.35) and (1.36) indicate that the polarization of the medium can 

be written as a convolution of the response flinction and the electric field(s). Following the 

same procedure that was adopted to calculate P"'(r,0, /''^'(r,r) can be calculated by 
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substituting Eq. (l.44d) for n = 3 in Eq. (1.48) and changing the integration variables as 

shown in Chapter 5 of Ref. [8], this yields 

« 00 00 

0  0  0  I — U  

X E ( r , t - - 1 , ) E i r j - ( j  - - / , ) ,  

where the non-linear response function is 

) = -2h-'d(t, )£<r,)6(/3 )Im^ I (2-2) 
a^\ 

where ) are the non-linear correlation functions, 9(tn) is the Heavyside step 

function, and t,,tj, and tj are the time intervals between successive interactions with the 

radiation field. The ) terms represent only the homogeneous part (the dynamical 

contributions) of . /?„(r3,/'i,r,) factors are given by [8,38] 

=Tr[G,^0,)GJ[,)G,^it,)p^A, 

R^ =Tr[G^,ih)OJt,)G^MP,l 

R, =Tr[G,^i[,)GJt,)G,^Wp^]. 

It is assumed that the system is initially in thermal equilibrium in the electronic ground state 

and its nuclear density operator is Tr denotes a quantum mechanical trace over the 

nuclear degrees of freedom. The coherence time evolution operator (off-diagonal Green's 

function) is defined by its action on an arbitrary operator A: 

G„,„(r) = Qxp(-iHj / n)AeKp(^iHj / h), n,m = e,g (2.4) 
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where and are the adiabatic nuclear Hamiltonians of the molecular system in the 

electronic states |g) and \e), respectively. (Note that (diagonal Green's function) 

describes the time evolution of the molecular nuclear degrees of fi-eedom in the electronic 

state m and has a well-defined classical analog. On the other hand, the off-diagonal Green's 

function, G„,„(0 with n m, describes the molecular dynamics in an optical coherence 

(electronic dephasing) during /, and periods, which is purely quantum mechanical. 

Using the form of Eq. (2.3), the non-linear response function may be given the 

following interpretation: The system is initially at thermal equilibrium in the electronic 

ground state p^,(-<») before applying the radiation field. When the field is turned on. the 

system interacts with the field three different times. Figure 2.1 shows that the first 

interaction (takes place at time =r-r, - f, -^3) prepares the system in an optical coherence, 

the system then evolves for a period r,. The second interaction (takes place at time 

Tj) converts the system coherence state into a population state. The system then 

evolves for ^ period as Figure 2.1 shows. Finally, tlie third interaction (occurs at time 

^3 = r - Tj) sets up again an electronic coherence in the system that evolves for . At time t > 

^3 the optical polarization is calculated by taking the trace. (Recall that 

(Eq. (1.48)) where /^^'(r) is given by Eq. (1.44d).) Therefore, one 

can conclude that r, and govern the dephasing times as described by G„,„(r) and ^ governs 

the population time in accordance with . 

The structural heterogeneity of the environment causes a variation in electronic 

transition firequencies, Q, of the guest molecules which gives rise to inhomogeneous 

broadening. As a result, the inhomogeneous broadening need to be included in tlie response 

function, Eq. (2.2). Upon evaluating the ensemble average of Eq. (2.3) over the distribution 

of Q (ZPL firequencies) one gets the following inhomogeneously broadened non-linear 

correlation ftmction [8] 
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(2.5) 

^ t3 

«-
) 
3 

coherence state population state coherence state 

<p, (Pj I'j t 

Figure 2.1 The time arguments in Eq. (2.1). The three interactions of the system with the 

radiation field take place at times (pi, 92? ^nd 93. The polarization is then 

calculated at time t; ti, t2, and 13 are the time intervals between the radiative 

interactions. 

where the x function represents the inhomogeneous dephasmg in time domain, xih 

comes from the ensemble average of the exp[-/Q(/3 ± factor which appears in ) 

(see Eq. (8.15) on p. 213 of Ref. [8]). That equation clearly shows the dependence of 

and R4 on exp[-/Q(f3 +f,)] and R2 and Rj on exp[-/Q(r3 and, therefore, 

Ri and R4 will select ^^3 +/i) and R2 and Rj will select zif^ "A)- Combining Eq. (2.2) with 

Eq. (2.5), one obtains [8] 

V 
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The radiation field E{r,t) for a general 4WM process can be decomposed into three 

components; 

E { r j )  =  E ^ { [  +  z ' + r ) e x p i i k ^ . r  -  i c o ^ t ) +  E , ( l  +  r ) Q K p ( , i k . , . r  -  i c o . j )  

+  E j { t } c x p i i k y r  -  i Q ) j t }  +  C . C . .  

where, for example, E,, E,, and Ej would determine the temporal shapes of the pulses 

centered at t = - (x' +1), t = -t, and t = 0, respectively. Here, x' is defined as the delay 

between the first (E,) and second (E,) pulses while x is the delay between the second and 

third (Ej) pulses, while co^ denotes the incident pulse mean frequency. Those pulses will 

interact with the medium to generate a new field with k, and co^, where can be any 

combination of the incoming wave vectors, k, = ±k, ± ki ± kj and co^ = ±o)\ ± ty, ± oJj. The 

various types of 4WM experiments differ by the choice of kj, co^, and the temporal 

characteristics of the incoming pulses [8, 17, 36, 38,47]. Substituting Eqs. (2.7) and (2.6) in 

Eq. (2.1) yields extremely complicated expression for with highly oscillatory terms, 

see Refs. [8, 17, 36, 38,47,48] for more details on selecting k, and o)^. However, 

can tremendously be simplified if die pulses are infinitely short, resulting in P'^'(r,/) ~ 

r, z'), vide infra. 

2.3 The Non-Linear Response Function for Photon Echo Spectroscopy 

Invoking the rotating wave approximation (by neglecting the highly oscillatory 

terms), in addition to the to die assumptions made in Refs. [8, 9, 17,38, 47,48] regarding the 

sums and differences of the electronic transition firequencies and the fields, leads to gratings 

witli wave vectors ±(k2 -k,) created by E, and E, interactions [8, 9, 17, 38,47]. As a result, 

the four dominant wave mixing signals show up in four possible directions: tkj ±(k, - k,). 

Thus, the remaining components of non-linear third-order polarization are given by [8, 9,48] 
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and 

f ' \ 

X  Z ( ^ 3 - 0 ^ 3 ( ^ ~ ^ 3 ) ^ 2 ( ^  +  ̂ ~ ^ ~ ^ 2 ) ^ 1 * ( ^ + ^ ' + ^  

~h~h~ 0®^P['(^3 + ^2 ~ ^l )^3 '(^2 ~ <^1 )^2 ~ '^1^1 ]' 

X ^(^3 + f,) £,(/ - rj) £;(r + r - ̂3 - /,) £,(r + r'+r 

-t^-U-tx)exp[j((2;3-oj.+cjxj/j + /(cy, -(W,)/, + ], 

(2.8) 

(2.9) 

where k j  = k 3  + k i - k ,  and kb = k 3 - k 2  + k , .  The other components (-k„ and -kjare 

obtained by talcing the complex conjugate since [P'^'(k,/)]* = /''^'(-k,/). 

The wave vector which an echo experiment selects is [8,9, 17,47] 

±k,, =±(k3 + k ,  - k | )  which, by Eq. (2.9), selects and /?3(r3,^,r,) factors. 

Recall that and R;^(,t^,t^,tx) factors select its static (inhomogeneous) contribution 

as xih -O' + ̂ ) is selected by /?, and /?j(/3,r,,r,) factors, vide supra. 

Note that if -^i) is the inhomogeneous contribution, a strong peak (echo) will appear at 

r, = fj. The xih +^,)factor, which is associated with i?, (^3,^,/'i) and R^ (^3,^,,^,), could only 

peak at r, = ̂ 3= 0 (since /, and ^3 are positive) and will not contribute to the echo. This rules 

out the direction tk^ of the signal leaving ik^ as the only echo direction. Therefore the 

polarization of any echo signal is given by Eq. (2.8). 

The time arguments of Ej in Eq. (2.8) can physically be justified based on the above 

physical interpretation of the non-linear response function. E, occurs at t = - (T' -1- T) and 

interacts with the medium (as first interaction) at time =/-/, -^2 ~^3 therefore, the 

time argument of E, becomes £,(^9, + r+1'). Similarly, E, takes place at t = -T and 

interacts with the medium (as second interaction) at time and, therefore, the 
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time argument of E, becomes £3(^93 + r). Finally, Ej comes at t = 0 and given that the third 

interaction happens at time would naturally depend on time ^3 only as 

shown in Eq. (2.8). 

2.3.1 Three-Pulse Photon Echo: Dephasing and rephasing processes 

Consider the stimulated photon echo (SPE) in which three short laser pulses with 

wave vectors k,, k,, and kj are sequentially applied to the system. Assuming that the form 

of the external field is as given in Eq. (2.7), which shows that the delay between the first (E,) 

and second (E^) pulses is x' and t is the delay between the second and third (E3) pulses. 

while iUj denotes the incident pulse mean frequency, vide supra. The stimulated echo, which 

centers around t = x' after the interaction of the third pulse with the material, appears in the 

direction k^=k3 + k2-k,. The integrated intensity of the stimulated photon echo signal, 

is given by [8,9] 

where -t^ (p^ = rand (pj=t-t^, and well separated, and x' and x are 

very large compared to the pulse widths. Thus, the lower limits of the triple-integral in Eq. 

(2.8) may be replaced by -00 and, then, the integration can trivially be carried out using tlie 

following relationship 

(2.10) 

In the impulsive limit, the laser pulses are infinitely short, that is 

£j(0 = + t). (2.11) 
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jf{x)d(,x-a)dx = f{a) (2.12) 
-<o 

Upon the substitution of Eq. (2.11) into Eq. (2.10), one obtains 

S„,,XT!,v)^]dt\[R.{t,T,T!)+R,{t,v,i!)fz{t-^) (2.13) 
0 

Note that the time dependent exponentails do not show up in Eq. (2.13) because they become 

unity after taking modulus squared (e.g., le"|* = 1). 

We shall now discuss how the present formalism (Eq. (9)) describes the impulsive 

echo formation through the rephasing processes of the individual dipoles. The SPE 

mechanism becomes governed by the response functions and 

At time t = - (x' +1), the pulse £, = c5(r+ r+ i') excites the system 

from the electronic ground state p^, (|g)(g|) to set up an optical coherence state (|g)(c;|) 

(a superposition state involving the ground (g) and the excited (e) electronic states), which 

then evolves for a period x' as described by G^^T'). At the time t = -x, the system interacts 

with Ej = S{t+ r) and is converted to either the electronic ground population state p^ or the 

electronic excited population state p^^. Tliese non-equilibrium population states evolve 

freely under G^^{ r) and G^^r), respectively, for a period x until t = 0 when the system 

interact with = S{t). The tliird pulse prepares tlie system in an optical electronic 

coherence again and the system emits a fourth radiation field called stimulated photon echo 

from the rephasing processes governed by G^^it). The form of the inhomogeneous 

broadening xCt-'c') indicates that the maximum of the echo is at t = x'. For t > x', tlie echo 

decays exponentially with time constant T2, due to electronic dephasing. The key event to 

notice here is that the first dephasing of the molecules has taken place during x' and tlie echo 

formation has reached its maximum at t = x' indicating that the third pulse has rephased tlie 
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molecules during x' as well. The selective elimination of inhomogeneous dephasing 

(inhomogeneous broadening in the frequency domain) by rephasing processes is the essential 

ingredient of photon echo experiments (i.e., the presence of two propagation periods 

in which dephasing and rephasing processes occur, respectively). It is 

important to note that must be long compared to T' and T for photon echo to be observed. 

The same constraint must be applied to 7j, which governs the population of the upper state. 

This implies that the laser pulse must have sufficient intensity to populate the upper state 

before there is any appreciable decay. 

It is important to bear in mind that the remarkable phenomenon of phase reversal 

after a system has been dephased by inhomogeneous broadening does not apply to 

homogeneous dephasing; that is homogeneous broadening is not reversible. The reversible 

character of the inhomogeneous dephasing enables us to measure the extent of the 

homogeneous dephasing time contributing to the echo decay; because the part of the decay 

that can not be reversed is then attributed to homogeneous dephasing. This may be better 

understood when the two-pulse photon echo is discussed, vide infra, because it involves only 

two pulses. 

Equation (2.13) tells us that the inhomogeneous broadening is eliminated at t = x' 

(which generates the echo). However, the signal still has contribution at all times t, 

the inliomogeneous broadening is not completely eliminated. Assuming that the 

inliomogeneous broadening is very large, whereby inhomogeneous dephasing time compared 

to all the timescales of the system, we have ^(/ - r") ~ - f). The stimulated photon echo 

is then 

= 1^2( r, 1-) + ^3 (z', r, i')f, (2.14) 

whereby the inhomogeneous broadening has been eliminated completely at all times. 
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2.3.2 Two-Pulse Photon Echo (PE) 

We start this subsection by describing the two-pulse photon echo experiment using 

the wave function approach, Bloch vector model, and, finally, the non-linear response 

fianction; more physical insight can be gained this way because of the simplicity of the two-

pulse photon echo. For a two-pulse photon echo measurement, the first pulse {nil pulse) 

with a wave vector k, creates an electronically coherent state of the chromophores. The 

ground and excited states of all the molecules are placed in a coherent superposition states 

with a well-defined phase relationships. The phase relationships are lost due to homogeneous 

(pure dephasing caused by dynamical interactions of the chromophores with the 

environment) and inhomogeneous broadening. After a time x', the chromophores are 

subjected to another pulse (7: pulse) with a wave vector k, that switches the phase associated 

with each coherent superposition state by 7t with respect to that of the first optical coherent 

states. This starts a rephasing process. A time x' still later (at t = 2x'), the inhomogeneous 

dephasing is eliminated (by being rephased) due to the rephasing process, and a macroscopic 

polarization (the echo field) is emitted by the sample in the direction k^ = 2k, - k,, vide 

infra. The echo reaches its maximum at t = x'. Since only the static inliomogeneous 

(reversible) dephasing is rephased at t = 2x', then the signal is a measure of the homogeneous 

(irreversible) dephasing that has occurred between t = 0 and 2x'. For t > x', the echo decays 

due to the electronic dephasing. (Again, Tt and T [ must be long compared to x' for the echo 

to be observed). 

The PE process can be described mathematically using die wave function approach. 

Assuming that, at time t = - 0, where t = - 0 is used to indicate the time just before tlie first 

pulse arrives, die chromophores are in the ground electronic state [g). At t = 0, tlie nil pulse 

prepares tlie chromophores in a coherent superposition (non-stationary) quantum state 

l^(0))=^(|?)+|e)), (2.15) 
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where |e) is the excited electronic state. At time t = t' - (just before the arrival of the n 

pulse), tlie wave function, |4'(0)), evolves under the time evolution operator as 

I'l'C^'-)) = -^[exp(-/£:,,z'//"Olg)+exp(-/£:///j)|e)], (2.16) 

where E„ and Eg are energies of the ground and excited electronic states, respectively. 

Applying the second pulse at t = x', yields 

1^(^')) = ;^[exp(-/j5:,r'/rO|g) + exp(-/£:^,r'//i)|e)], (2.17) 

where the phase has been reversed in the wave function. During the time intei-val Ti, the 

temporal evolution of chromophore wave function is given by 

|^P(z'-rr,)) = ̂ [exp(-/£,z'//i-;£^,r, //j)|g)+exp(-/£^,i'//i-/£,r,/hp)] .  (2.18) 

The polarization of the medium can be calculated by evaluating the expectation 

value of tlie electronic transition dipole moment and is given in Ref [12, 13]. Since an 

expression for the PE process polarization will be obtained through the non-linear response 

function approach, the polarization expression resulting from evaluating the expectation 

value of the electronic transition dipole moment will not be given here (see Ref [12, 13]). 

For equal time intervals = t', the polarization of the chromophore quantum state evolves 

radiating the echo field. Basically the second pulse, which acts as a phase reversing tool, 

subtracts the tiine develupment (in the wave function phases, i.e., the exponentials) during 
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the interval t' such that the chromophores arrive back at their time t = 0 states at t = t' + T]. 

For example, at TI = T', Eq. (2.18) becomes 

|^(2r')) = ^[exp(-/(£', + £^.)r'/S)k)+exp(-/(£-, + (2.19) 

which shows that both electronic states of the chromophores have the same phase. This is the 

case for the wave function at t = 0 (just like Eq. (2.15)). As a matter of fact, setting T' equal 

to zero yields back Eq. (2.15). In other words, things have been restored. 

The PE process can be visualized with the help of Bloch vector model using the 

construction of Figure 2.2, which shows the temporal evolution of the dipoies. The 

cliromophores are initially in the ground electronic state in Figure 2.2 (a), where the Bloch 

vector, u, is pointing in the negative z-direction. Applying the first pulse at time t = 0 rotates 

the vector u 7r/2 radians up to the positive y-direction (Figure 2.2 (b)). Now the molecules 

(chromophores) are in a coherent superposition state, which is represented by Eq. (2.15), with 

a well-defined phase. Afterward, the molecules in Figure 2.2 (c) acquire different 

processional frequencies and are no longer in phase (the dipoies fan out in the xy-plane) due 

to the medium inhomogeneities; the higher frequency members will be ahead in phase and 

the lower frequency members will be behind in phase. The numbers label the positions of the 

dipoies as to which is ahead of the other, e.g., dipole labeled "+2" is ahead the rest and "-2 " 

is falling beliind. At time t = x', the molecules in Figure 2.2 (d) are subjected to a second 

pulse which rotates the vector u about the x-axis n radians up to the negative y-direction 

resulting in the reversal of the relative phases among the dipoies causing the members with 

higher frequencies that are ahead an amount r| to suddenly be behind t] (e.g., member "+2" is 

now behind and "-2" is ahead). In Figur 2.2 (e) the dipoies continue to precess about the z-

axis in the same sense so that the faster dipoies can catch up v^th slower ones and eventually 

they add up constructively and the system rephases at t = 21', yielding a macroscopic 
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.0 

(a) (b) (c) 

(d) (e) 

Figure 2.2 Bloch vector model for photon echo development, (a) For molecules initially in 

the ground electronic state, the Bloch vector u consists of one component 

pointing in the negative z-axis. (b) A izll pulse, rotates u up to positive y-axis. 

(c) The individual dipoles fan out due to the inhomogeneous broadening of the 

medium, (d) Another pulse rotates the dipoles K radians resulting in phase 

reversal among the dipoles. (e) Precessional motion continues about the z-axis in 

the same sense such that the faster dipoles can catch up with the slower ones 

allowing the system to rephase and eventually radiate an echo. 
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polarization that radiates an echo field. Since the homogeneous dephasing is irreversible (not 

rephased at t = 2 t'), and only the inhomogeneous dephasing has been eliminated (rephased), 

the echo must then decay due to the homogeneous electronic dephasing. Therefore, the echo 

signal is a measure of the extent the homogeneous dephasing (homogeneous broadening in 

the frequency domain) between t = 0 and 2 x'. 

The two-pulse photon echo (PE) is a special case of the SPE in which pulses 2 and 

3 are coincident (k, = kj). The PE signal, 5,,,,, is generated in the direction k„ = 2k, - k, 

and it is obtained by setting E^{t) = ^3(0, k, = kj, and r=0, i.e., Eq. (2.13) gives 

^) = J^',0, z') + R ,  (1^,0, n f z i t  - n ,  (2.20) 
0 

and very large inhomogeneous broadening, ^(f- r")- z^), Eq. (2.20) yields 

5,,-(r') = li?2(T',0,i')+/?3(z',0,r')f (2.21) 

2.3.3 Dynamical Considerations 

A 4-point correlation function, F( r,, r,, tj  , rj, for a system whose modes are both 

linearly and quadratically coupled will be calculated in Chapter 4 using the excited state 

vibrational fiamiltonian, Hg, in Eq. (1.57). The associated ) and ) can 

be obtained from F( using Eq. (4) of Chapter 4. F( tj  , r,, r,, rj and its 

associated for only linear coupling can then be obtained by 

setting co' = 0". Our attention here will be focused on linearly coupled modes only. The 

response fimctions can be calculated from the line broadening fianction, g{t',T), which is a 

complex quantity. As Fleming and co-workers [26] point out, the real part of g(r;r) 

describes the line broadening via fluctuations , while the imaginary part describes the longer 
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time dynamics such as spectral diffusion. g{t\T) is as important in non-linear spectroscopy 

as it is in linear measurements. In linear spectroscopy, the correlation function is (Eq. (1.58)) 

J (/;r), =exp[-g(r;r)-/Qr], (2.22) 

while in non-linear spectroscopy the photon echo correlation functions, vide supra, are 

(^3,t , , t ^ ) - exp[-/Q(/3 - 1 ^ ) - g  +  

g { t , \ T ) - g { t , + t y \ T ) - g ' { t ^ + t , - J )  +  g ' { t ^  

{2.23) 

^3 (^3' ̂ 2' ̂ 1) = exp[-/Q(r3 - /,) - g(/3 ; T ) - g \ t ^ ; T )  +  

g'{tj+[^-,T)-g'{t^ +t^;T) + g\t^ +[^+c^-,T)]. 

Equation (2.23) can account for structural and dynamical information (e.g., pure electronic 

dephasing, quantum beats and spectral diffusion) about the system. In order to obtain this 

valuable information, one need to use the appropriate gif,T). Currently, we are aware of 

four mathematical forms of g(^t;T) with each form operating at a different level of physical 

sophistication: One form was given in Eq. (1.59b) and requires a simple damping constant in 

order to calculate spectra. Although it is unphysical because it yields a spectrum with a ZPL 

carrying a width that depends on the phonons damping (yj), it shows a reasonable structure 

for the vibrational progression members. Another form of git',T) was obtained by Mukamel 

and co-workers using the multi-mode Brownian oscillator (MBO) model (see Chapter 8 of 

Ref. [8]). The MBO model has an advantage because it assigns different damping constants 

to different modes, and provides folding of the progression members which takes place in 

mixed crystals at liquid helium temperature [49,50]. However, it yields the incorrect 

homogeneous width and intensity for the ZPL. (See Appendix A on p. 146 for more details.) 

The third form was obtained by Osad'ko [11, 13, 14]. Although it does not seem to have any 
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damping constants, it is set up sucli that the electronic pure dephasing can easily be taken into 

account by applying a damping constant, for tlie homogeneous broadening of the ZPL 

and a damping constant, for damping of the phonons. The last form, which we have 

developed (see Eq. (25) of Chapter 3), is given by 

git-T) = K,{T)W2 + Sj{coih{/mcoJ2) -
(2.24) 

e'''''"'^[coth(yfl^dyy2)cos(a;/) - /sin(cyjO]K 

where the first term is the electronic part, g{t;Ty', and the second one is the phononic 

contribution, g{t;Ty'', see Sec. IIB of Chapter 3 for more details. However, Osad'ko's and 

ourg(/; T) provide the most physical spectral or temporal profiles. As can be seen from Eq. 

(2.24), at high temperature git]T) is dominated by its real part. The imaginary part of 

g(t:T) is independent of temperature and , therefore, it dominates at low temperature. In the 

limit T -> 0 K, g(/,T) becomes 

= 1^1/2+5,(1- (2.25) 

Suppose that g(t) = y t, for illustration, which can be substituted in Eq. (2.14) to 

obtain 

'5i7'f(^'^)=exp(-4/i'), (2.26) 

where y is just a simple damping constant that measures half-width at half maximum 

(hwhm). Equation (2.26) shows the decay of the SPE signal at large x' and that the echo 

drops to 1/e of its initial value at t = T2/4 (/= l/T,) [51]. This implies that the optical pulse 

should be shorter than TJA to time resolve the echo decay. Equation (2.26) is a common 
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expression used by experimentalists to fit their data to obtain the slope which represents the 

depahsing time. Substituting Eq. (2,23) into Eqs. (2.13) or (2.14) yields the whole SPE 

profile that accounts for pure electronic dephasing, quantum beats and spectral diffusion. 

While the period x' measures the fast dynamics (electronic dephasing), x reflects longer time 

population dynamics and spectral diffusion (time dependent spectral shifts), vide infra. 

Normally, the electronic dephasing rate can be extracted fi-om the slope of the echo 

signal as a function ofx' [51, 52, 53]; alternatively, if the echo decays within the time 

resolution of the experiment, the dephasing can be obtained from the echo peak shift [26,31, 

54, 55]. The echo peak shift in a SPE signal is a measure of the difference between the signal 

decay on the rephasing side and that non-rephasing side. Thus the peak shift reflects the 

extent of the system ability to rephase (to generate the echo), i.e., the system's ability to retain 

memory of its electronic transition frequency after spending time, x, in a population state. As 

Mukamel and co-workers point out [37], during the delay period x (waiting time), the 

spectrum changes (both shifts and broadens) due to nuclear diffusive motions that are slow 

compared with the inverse line width, and that change the inhomogeneous distribution of the 

nuclear configurations. This time dependent process is called spectral difftision [2-4, 6, 7. 

28, 56-58] in which the linewidth changes with time. Spectral diffusion processes that occur 

during x change the dephasing rate due to the change of the chromophore environment. 

During die time period x, vibrational coherences may be observed (i.e., quantum beats) in the 

ground or the excited states and pure population relaxation in the excited state. This period 

represents the nuclear motions in an electronic state (see Eq. 2.27)) where the system does 

not acquire any phase and therefore no dephasing processes can take place during x (x is 

equivalent to where only nuclear dynamics may be probed). The absence of nuclear 

dynamics during x' makes it impossible to probe population dynamics and spectral diffusion ( 

x' is equivalent to t^ and t3 intervals, where only dephasing processes can be measured, vide 

supra). The fact that the diagonal Green's function, G„„„ (r,), governs the time evolution of 
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population states during indicates that only nuclear motions may be studied. This can be 

seen from the mathematical structure of , 

= exp(-///„; / h)AQ\piiHj / h). (2.27) 

Equation. (2.27) is a clear representation of one nuclear Hamiltonian of an electronic state (g 

or e) and therefore only vibrational states can be probed. For applications of measuring 

population dynamics and spectral diffusion using non-linear response functions in SPE 

experiments see [8-10, 17, 26, 31, 37, 38]. 

In a PE experiment, pulse 2 coincides with pulse 3 (x = 0) and thus the PE signal 

does not contain contributions from shift in energy of the excited state (i.e., population state) 

resulting from Stokes shift or spectral diffusion (because the response function, in the 

impulsive limit, becomes arid (C^,^,(i')Gj,„(z')^, in which dephasing is right 

followed by a rephasing process without a waiting time (t) to allow for longer time dynamics 

to take place). On the other hand, the SPE contains the t (the coherence information storage 

interval) interval that can be utilized to probe energy shift of the excited state, vide supra. 

(The reader is reminded that while pure electronic dephasing processes do not involve energy 

change, clearly population relaxations do). 

The impulsive PE signal with finite inhomogeneous broadening can be calculated 

using Eqs. (2.20), (2.23), and (2.24). This yields 

5/.e(^';n = J^/^exp[-w-(f-r')-] 

X exp{-2Re[2g(r;r) + 2g( z';!) - g(f +1";!)]}, 

where a Gaussian distribution has been used for the inhomogeneous broadening with w-

being the variance. Note that only the real part contributes to the PE signal. Equation (2.28) 
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accounts for inhomogeneous dephasing, electronic dephasing (homogeneous broadening of 

the ZPL), and quantum beats, vide infra. Equation (2.28) generates a PE signal with an 

initial fast non-exponential decay that reflects the FSB contribution, periodic vibrational 

oscillations (quantum beats) signifying the coupling between nuclear motions and electronic 

coherence (interference between the ZPL and the multi-phonon transitions), and a slow 

exponential decay component due to the ZPL, vide infra. See Figures 3,4, 5, and 6 of 

Chapter four for examples. 

Quantum beats constitute the simplest example of quantum mechanical interference. 

When two levels are excited coherently and emit to a common final level, the emission 

spectrum oscillates with the two-level frequency. For example, suppose that the molecules 

are excited to a superposition of two closely spaced levels jo) and |c) by a pulse. One then 

observes that the emission intensity is modulated at the splitting and varies periodically 

with the frequency (for examples of quantum beats showing up in spectroscopy see Refs. 

[8-10, 12-14, 18-20, 29, 33, 38, 51-55, 59]). (Shank and co-workers [51] performed 

femtosecond echo experiments where quantum beats were due to the coupling of the nuclear 

motions to the electronic coherence between two electronic states). Quantum beats in time-

domain experiments correspond to Franck-Condon progressions in the fi:equency-domain. 

Several examples of quantum beats showing up in two cases will be given in Chapter 4. The 

first case illustrates an impulsive SPE signal, which involves both linearly and quadratically 

coupled mode, due the vibrational fi-equency change upon electronic excitation which leads 

to a superposition of waves of two different frequencies, which gives rise to quantum 

mechanical interference (beats) with intensity that varies periodically with the firequency 

difference. The second case has to do with impulsive PE signals for only linearly coupled 

modes, where the quantum beats appear as underdamped vibrational oscillations, due to 

quantum mechanical interference between the ZPL and the multi-phonon transitions with 

intensity that varies periodically with the mode firequency o)-^ modulated by the ZPL 
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frequency Q (basically, the periodic position of the fundamental transition and its overtones 

in the frequency-domain). If Q is set equal to zero, then the quantum beats are periodic only 

with the mode frequency cOj. This quantum mechanical interference between the 2PL and 

the underdamped vibrational frequencies can easily be seen by using Eqs. (2.29) and (2.25) as 

follows: 

J (0 = exp[-iQ(-;'^|/|/2 + S,(l- )1 
en 

=  e x p ( - i Q f ) e x p ( - S j  -  e \ p ( - i m c o /  -  m y j t l / l ) /  m l  
"1=0 (2.29) 

= exp(-5^. - ;',.,|/|/2){exp(-/Q0 + Sj exp(-/(Q +  o ) j  ) t  -  y j \ t \ l 2 )  +  

exp(-/(a + Ico^ )t - /,U|) + ̂ 5*] exp(-/(Q + )t -2>y j\t\l2)+ , 

where tlie first term shows the frequency of the ZPL, and tlie terms thereafter show the 

frequencies of the fundamental peak and its overtones modulated by the ZPL frequency, 

which gives rise to quantum beats (Franck-Condon progressions in the frequency-domain) 

due to electron phonon coupling. 

One can see what happens to the beats when the nuclear motions (phonons) are 

dec o u p l e d from the electronic transition (ZPL) by setting Sj = 0 in Eq. (2.29), J (t) becomes 

/ (0  = exp( - /n r -x„ | / l /2 ) .  (2 .30)  

Equation (2.30) tells us that tlie beats have vanished and the ZPL represents the entire profile. 

Fourier transforming Eq. (2.30) yields a single-site absorption spectnmi with one sharp band 

which is the ZPL with EC factor e'''' = 1 

The mechanics that have been carried out in Eq. (2.29) should provide an insight 

about how the ZPL frequency modulates the mode frequency ca- and its multiples. Of 
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course, in order to get the whole PE signal one needs to go through Eq. (2.28). However, PE 

decay measurements are linear absorption measurement hidden undemeatli a broad 

inhomogeneous distribution, and the homogeneous optical band is related to the PE signal 

[11, 13, 14, 29, 60] in which each component of the absorption lineshape is related to the 

temporal behavior of the echo decay function over the relevant time scales [II, 13. 14, 19, 

20]. 

2.4 References 

1. Persistent Spectral Hole Burninig: Sience and Applications, edited by W. E. Moemer 

(Springer, New York, 1987), Vol. 44. 

2. R. Jankowiak, J. M. Hayes, and G. J. Small, Chem. Rev. 93, 1471 (1993). 

3. G. J. Small, Spectroscopy and Excitation Dynamics of Condensed Molecular Systems. 

edited by V. M. Agranovich and R. M. Hochstrasser (North-Holland, Amsterdam, 

1983) p. 437. 

4. G. Shulte, W. Grond, D. Harrer, and R. J. Silbey, J. Chem. Phys. 88,679 (1988). 

5. S. VQlker. Relaxation Processes in Molecular Excited States, edited by L 

Fiinfschilling (Kluwer, Dordrecht, 1989), p. 113. 

6. J. Friedrich and D. Harrer, J. Chem. Phys. 76,61 (1982). 

7. J. Friedrich and D. Harrer, Angewandte Chemie, Int. Ed. 23,113 (1984). 

8. S. Mukamel, Principles of Nonlinear Optical Spectroscopy (Oxford University, New 

York, 1995). 

9. Y. J. Yan and S. Mukamel, J. Chem. Phys. 94,179 (1991). 

10. W. B. Bosma, Y. J. Yan, and S. Mukamel, Phys. Rev. A. 42, 9620 (1990). 

11. I. S. Osad'ko, Spectroscopy and Excitation Dynamics of Condensed Molecular 

Systems, edited by V. M. Agranovich and R. M. Hochstrasser (North-Holland, 

Amsterdam, 1983) p. 437. 



www.manaraa.com

63 

12. [. S. Osad'ko and M. V. Stashek, J. Lumin. 64, 25 (1995). 

13. I. S. Osad'ko, Adv. Poly. 114, 125 (1994). 

14. I. S. Osad'ko and M. V. Stashek, JET? 79,293 (1994). 

15. I. S. Osad'ko and S. N. Gladenkova, Chem. Phys. Lett. 198, 531 (1992). 

16 L S. Osad'ko, M. A. Mikhailov and S. N. Gladenkova, Chem. Phys. Lett. 270,183 

(1992). 

17. R. F. Loring and S. Mukamel, Chem. Phys. Lett. 114,426 (1985); J. Chem. Phys. 83. 

2116(1985). 

18. S. Saikan, A. [maoka, Y. Kanematsu, K. Sakoda and T. Kishida, Chem. Phys. Lett. 

162,217(1989). 

19 S. Saikan, T. Nakabayashi, Y. Kanematsu, N. Tato, Phys. Rev. B. 38, 7777 

(1988). 

20. S. Saikan, A. Imaoka, Y. Kanematsu, K. Sakoda, K. Kominami, M. Iwamoto. 

Phys. Rev. 6. 4 1 ,3185 (1990). 

21. S. Saikan, Y. Kanematsu, R. Shiraishi, T. Nakabayashi, T. Kushida, J. Luminescence. 

38, 15 (1987). 

22. S. Saikan, J. W-I Lin, H. Nemoto, Phys. Rev. B. 46, 11125 (1992). 

23. S. Asaka, H. Nakatsuka, M. Fujiwara, M. Matsuka. Phys. Rev. A. 29,2286 (1984). 

24. C. J. Bardeen, G. Cerullo, C. V. Shank, Chem. Phys. Lett. 280, 127 (1997). 

25. P. Schellenberg, R. J. W. Louwe, S. Shochat, P. Gast, and T. J. Artsma, J. Phys. 

Chem. B. 101, 6786 (1997). 

26. Y. Nagasawa, S. A. Passino, T. Joo, and G. R. Fleming. 106,4840 (1997). 

27. W. P. de Boeij, M. S. Pshenichnikov, K. Duppen, and D. A. Wiersma, Chem. Phys. 

Lett. 138, 1 (1995). 

28. L. R. Narashiman, K. A. Littau, D. W. Pack, Y. S. Bai, A. Eischner, and M. D. Fayer, 

Chem. Rev. 90,439 (1990). 



www.manaraa.com

64 

29. W. H. Hesselink and D. A. Wiersma, Spectroscopy and Excitation Dynamics of 

Condensed Molecular Systems, edited by V. M. Agranovich and R. M. Hochstrasser 

(North-Holland, Amsterdam, 1983) p. 249. 

30. R. L. Shoemaker, Annu. Rev. Phys. Chem. 30, 239 (1979). 

31. T. Joo, Y. Jia, J-Y. Yu, M. J. Lang, and G. R. Fleming, J. Chem. Phys. 104. 6089 

(1996). 

32. K. A. Nelson and E. P. Ippen, Adv. Chem. Phys. 75, 1 (1989). 

33. J. Chesnoy and A. Mokhtari, Phys. Rev. A 38, 3566 (1988). 

34. W. S. Warren and A. H. Zewail, J. Chem. Phys. 78, 2279 (1983). 

35. N. F. Scherer, L. D. Ziegler, and G. R. Fleming, J. Chem. Phys. 96, 5544 (1992). 

36. R. F. Loring, Y. J. Yan, and S. Mukamei, J. Chem. Phys. 87, 5840 (1987). 

37 Y. J. Yan and S. Mukamei, Phys. Rev. A 41, 6485 (1990). 

38. S. Mukamei, Annu. Rev. Phys. Chem. 41, 647 (1990); Adv. Chem. Phys. 70, 165 

(1988). 

39. H. L. Fragnito, J, Y. Bigot, P. C. Becker, and C. V. Shnak, Chem. Phys. Lett. 160. 

101 (1989). 

40. S. Saikan, Phys. Rev. A 38,4669 (1988); S. Saikan, T. Nakabayashi, Y. Kanematsu, 

and A. Imaoka, J. Chem. Phys. 89,4609 (1980). 

41. B. M. BGiarlamov, R. I. Personov, and L. A. Bykovskaya, Opt. Commun. 12, 191 

(1974). 

42. Y. T. Mazurenko and V. S. Udaltsov, Opt. Spectrosc. 44,417 (1977). 

43. M. J. Weber, J. Lumin. 36,179 (1987). 

44. R. L Personov, Spectroscopy and Excitation Dynamics of Condensed Molecular 

Systems, edited by V. M. Agranovich and R. M. Hochstrasser (North-Holland, 

Amsterdam, 1983) p. 555. 

45. R. Jankowiak and G. J. Small, Anal. Chem. 61,1023A (1989). 



www.manaraa.com

65 

46. R. Jankowiak and G. J. Small, Chem. Res. Toxicol. 4,256 (1991). 

47. S. Mukamel and R. F. Loring, J. Opt. See. Am. B 3, 595 (1986). 

48. Y. J. Yan and S. Mukamel, J. Chem. Phys. 89, 5160 (1988). 

49. R. L. Beckman and G. J. Small, Chem. Phys. 30, 19 (1978). 

50. G. Fischer, Chem. Phys. Lett. 20, 569 (1973). 

51. P. C. Becker, H. L. Fragnito, J. Y. Bigot, C. H. Cruz, R. L. Fork, and C. V. Shank, 

Phys. Rev. Lett. 63, 505 (1989). 

52. W. Hesselink and D. A. Wiersma, Phys. Rev. Lett. 73,1991 (1979). 

53. R. W. Schoenlein, D. M. Mittleman, J. J. Shiang, A. P. Alivisatos, and C. V. Shank, 

Phys. Rev. Lett. 70, 1014 (1993). 

54. A. M. Weiner, S. De Silvestri, and E. P. Ippen, J. Opti, Soc. Am. B 2,654 (1985). 

55. R. Kaarli and M. Ratsep, Laser Phys. 2. 517 (1992). 

56. E. J. Nebbering, D. A. Wiersma, and K. Duppen, Chem, Phys. 183, 167 (1994). 

57. D. Thorn Leeson, 0. Berg, and D. A. Wiersma, J. Phys. Chem. 98, 3913 (1994). 

58. L. R. Narashiman, Y. S. Bai, M. A. Dugan, and M. D. Fayer, Chem. Phys. Lett. 176. 

335(1991). 

59. M. J. Rosker, F. W. Wise, and C. L. Tang, Phys. Rev. Lett. 57,321 (1986). 

60. P. Vohringer, D. C. Amett, T. -S. Yang, and N. F. Scherer, Chem. Phys. Lett. 237, 

387(1995). 



www.manaraa.com

66 
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ABSTRACT 

Understanding the similarities and differences between optical coherence loss of 

electronic transitions of chromophores in glasses and in the glass forming solvent requires, in 

part, linear response (2-point correlation) functions, J(t;T). An approximate excited state 

vibrational Hamiltonian (Hg) which accounts for both linear and quadratic electron-phonon 

coupling is derived that is acceptable for mode frequency changes smaller than 30%. The 

associated linear response function for the case of no damping is obtained. A response 

function that includes damping is proposed for systems whose modes are either linearly or 

quadratically coupled. It is the product of three response functions, two of which are 

phononic and associated with linear and quadratic modes. The third response function is 

electronic with a dephasing frequency Yd that is the width of the zero-phonon line. The total 

response function yields single-site absorption spectra in which folding of the widths of 

multi-phonon and sequence transitions occurs. Applications of the new response flmctions 

are made to the temperature dependence of single site absorption and hole-burned spectra of 

the special pair band of the bacterial reaction center and the temperature dependence of the 

single site absorption spectrum of Al-phthalocyanine tetrasulphonate in glassy ethanol. 



www.manaraa.com

67 

I. INTRODUCTION 

Recently, there has been considerable activity in the use of femtosecond photon echo 

spectroscopies to study how nuclear (vibrational) motions lead to coherence loss of optical 

transitions of solute chromophores in liquids at room temperature.Of particular interest 

has been the role of inertial (librational) intermolecular modes ("phonons") which couple 

linearly to the electronic transition and lead to optical dephasing on a timescale shorter than 

1 ps. (Such modes lead to multi-phonon transitions in the Sj^-Sq absorption spectrum.) One 

reason for this interest is that the inertial modes may set the stage for longer timescale, larger 

amplitude nuclear solvent dynamics which are the rate limiting step in condensed phase 

electron-transfer reactions. The multi-mode Brownian oscillator (MBO) model' has 

often been used in interpretation of the data. In this model the linearly coupled modes are the 

primary BOs which, along with the bath oscillators, are taken to be harmonic. The coupling 

between a primary BO and the bath modes is linear in the BO displacement which results 

from electronic excitation of the chromophore. This coupling gives rise to a damping 

constant, Yj(co), for BO j of frequency coj. This gives rise to an effective frequency-dependent 

damping ('yj(coj)) for the jth BO where the frequency dependence arises from the spectral 

distribution of the BO's coupling to the bath oscillators. Yj(co) enters into the optical response 

function (see p. 227 of ref. 15). In applications of the MBO model the frequency dependence 

of Yj is commonly neglected which amounts to a white spectrum for the bath (known as 

Ohmic dissipation). In the case of underdamping (yj < coj), this leads to a width for the zero-

phonon line (ZPL) of 2Sj(2 nj+ 1)y j, where Sj is the Huang-Rhys factor and rij the thermal 

occupation number of BO j. Thus, incorporation of pure electronic dephasing associated 

with the width (y^) of the ZPL in realistic host media at low temperatures requires different 

mechanisms that cannot be represented by the MBO model. 

As discussed in refs. 16,17, hole burning and photon echo spectroscopies have been 

used to study pure electronic dephasing of the ZPL of chromophores in glasses and polymers 
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at low temperatures since the early 1980s (see refs. 18,19 for reviews). At temperatures 

lower than about 10 K the homogeneous v^dth of the ZPL is determined by the tunneling 

dynamics of the bistable configurations or two-level systems of the glass. Above about 15 K 

the dephasing is dominated by quadratic electron-phonon coupling of the type identified 

earlier for chromophores in host crystals. The studies of the ZPL in glasses and polymers led 

to three important findings. The first is that the exchange coupling dephasing 

mechanism,-0'-' which stems from diagonal quadratic electron-phonon coupling, often 

accounts for the homogeneous width of the ZPL at higher temperatures. This coupling leads 

to a change in the frequency of a pseudo-localized phonon upon electronic excitation of the 

chromophore. The second finding is that these dephasing phonons are Franck-Condon (FC) 

inactive, i.e. exhibit negligible linear electron-phonon coupling. The third finding is that the 

linearly coupled modes responsible for multi-phonon transitions appear to be infrequently 

involved in pure electronic dephasing. The last two findings suggest that the system phonons 

can often be divided into two subsets, one associated with linear coupling and tlie other with 

quadratic coupling. The most detailed studies which support the above findings involved 

spectral hole burning experiments on Al-phthalocyanine tetrasulphonate (APT) in 

hyperquenched glassy films of water, ethanol and methanol'"^ which were performed over a 

very wide temperature range, 5- ~ 130 K. In the case of water, the exchange coupling modes 

correlated with the 50 and 180 cm"' transverse and longitudinal acoustic modes of liquid 

water. For ethanol, the exchange coupling mode frequency is ~ 50 cm~^ close to the first 

maximum in the spectral density of liquid ethanol. High resolution hole-bumed spectra 

proved that these modes exhibit little if any FC activity. For water, ethanol and methanol the 

FC activity by intermolecular modes is dominated by phonons at 38,26 and 17 cm~', 

respectively. They were assigned as modes mainly associated with APT librationai motion. 

In the case of glassy water, characterization and determination of the electron-phonon 

coupling parameters (including the Huang-Rhys factor and shape of the one-phonon profile 
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for the linearly coupled mode at 38 cm"') and static inhomogeneous broadening associated 

with the pure electronic transition at lower temperatures led to calculated hole burned spectra 

for higher temperatures in good agreement with the experimental spectra. • <5 The frequency 

domain hole burning theory of Hayes et al.--'-'^ was used for tlie calculations. The results 

indicate that the above inliomogeneous broadening is constant over the temperature range 

used in the experiments. Given the good agreement, the same experimentally determined 

parameters were used to calculate the width of API's origin absorption band in water at room 

temperature. The value of 500 cm"' obtained differs by only 10 cm~' from the experimental 

value. It was suggested that the combination of temperature dependent hole-burning and 

photon echo studies above and below the glass transition of the solvent should provide new 

insights on optical coherence loss of chromophores in liquids (see also refs. 25,26). 

We present here linear response or 2-point correlation functions, J(t;T), which do 

yield single-site absorption and hole burned spectra at finite temperature that describe the 

essential features of experimental spectra. (The harmonic approximation is assumed for the 

optically active modes.) The response functions are appropriate for modes which are 

underdamped, yj < coj.27 The cases of critically damped and overdamped modes are treated 

in Chap. 8 of ref. 15. The case of linear electron-phonon coupling is considered first. The 

form of J(t;T) yields, for example, widtlis (fiA'hm) of Yei(T) + nj Yj(T) for members of the cold 

absorption progression (nj=0,l,...) associated with mode j with Yei(T) the contribution from 

pure electronic dephasing. The linear dependence (folding) on nj is valid for any relaxation 

mechanism of the active phonon tliat is linear in its coordinate. Insofar as the temperature 

dependencies of Ygi and yj are concerned, one need consider different mechanisms and feed 

their T-dependencies into J(t;T), which is standard procedure. J(t;T) or, equivalently the 

lineshape function g(t;T), allows for straightforward evaluation of the 4- and higher-point 

correlation fimctions associated with photon echo spectroscopies. Next, we consider the case 

where the active modes exhibit diagonal quadratic electron-phonon coupling which results in 
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mode frequency changes upon electronic excitation of the chromophore. An approximate 

excited state vibrational Hamiltonian, Hg, is derived which is shown to be adequate for a 

mode frequency change smaller than about 30%. (Off-diagonal quadratic electron-phonon 

coupling or the Duschinsky effect is neglected since it is expected to be unimportant for 

strongly allowed electronic transitions of dye molecules.-^ Such a change may be considered 

to be large for low frequency modes of condensed phase systems. An expression for the 

linear response function is derived for the case of no damping. A linear response function 

with damping is given for a system whose modes are either linearly or quadratically coupled 

(see preceding paragraph for motivation). The response function is the product of tliree 

response functions, two of which are associated with a phononic contribution, one from 

linearly coupled modes and the other from quadratically coupled modes, the third response 

function is associated with pure electronic dephasing. 

Applications of tlie new response functions include the single-site absorption and 

hole-burned spectra of tlie special pair band of the bacterial reaction center which previous 

studies had shown to be characterized by linearly coupled modes at 30 and 120 cm"' and 

tlie temperature dependence of the single-site absorption spectrum of Al-phthalocyanine 

tetrasulphonate in glassy ethanol. 

11. THEORY AND CALCULATED SPECTRA 

A. Approximate excited state vibrational Hamiltonian H^ and linear response 
function J(t;T) with no damping. 

Consider absorption from the ground electronic state (g) to an excited electronic state 

(e) and let co" and co' be, respectively, the ground and excited state frequencies of a 

vibrational mode. Let q be the dimensionless normal coordinate of this mode for the ground 

electronic state. It is related to the mass-weighted coordinate, Q, by q = ((o"/fi)l^2Q 

Similarly, we defme d as the dimensionless translational displacement between the potential 
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energy minima of the two electronic states. For linear and diagonal quadratic electron-

phonon coupling the excited state vibrational Hamiltonian is given exactly by^^ 

+  [ ( r  - \ ) q '  + 2 r  q d  +  r - d - ]  +  h Q ,  

where r = (coVco"). hQ is the adiabatic electronic energy gap. The r^d^ term multiplied by hco 

"/2 is the optical reorganization energy. Thus, 

Q y = Q  +  ( i ) " r - d - / 2 ,  ( 2 )  

where Qy is the vertical (Condon) frequency gap. When co' = co", the optical reorganization 

energy is Sco", with S = d-/2 being the familiar Huang-Rhys factor. In Eq. (1), Hg is the 

vibrational Hamiltonian for the ground state: 

H g = r i ( o " { a ^ a +  1 / 2 ) ,  

with a"^ and a the raising and lowering operators for the ground state, i.e. q = 2~''^(a"^ + a). 

For a multi-mode system one need only sum Eq. (1) over all modes. When dealing with 

fluorescence or resonance Raman, one should interchange e and g, co' and co" and associate q 

with the normal coordinate of the excited state (e.g. d would now equal (co'/?j)^Q rather than ( 

(o"/h)AQ). The reader is referred to ref. 31 for further (and simple) discussion. 

Exact solutions to tlie problem of determining the Franck-Condon factors associated 

with Eq. (1) have been available for many years.^-'^S Thus, calculation of "stick" linear 

absorption spectra, a(co), is routine. One can introduce shapes to the sticks and calculate the 

temperature dependencies of the integrated absorption intensities of the vibronic (phononic) 
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transitions. However, doing tiie equivalent of this in the time domain with Eq. (1) is both 

difficult and impractical, especially when one is interested in nonlinear spectroscopies such 

as the 2-pulse and 3-pulse stimulated photon echo since they involve 4-point correlation 

functions. It is essential, therefore, to approximate Eq. (1). In what follows we derive an 

expression for Hg which is adequate for r > 0.7 (without loss generality we take co' < co"). 

Our approach involves a first-order Taylor series expansion of the r- - 1 and r- terms 

in Eq. (2) about r = 1 (e.g., r—l a 2r-l). When it is recognized that Hg of Eq. (3) is exactly 

equivalent to 

it follows easily that 

H. «tm' [ ^ a * a  +  + ( 2 - r - ' ) c / ( a ^  + a ) / s f 2 + { 2 - r - ' ) d - / 2  + nQ 
(5) 

when tlie term 2~' h co'(l - r~') (a"*"" + a^) is dropped. // is the elimination of this term that 

leads to the desired simplification. The (a"^" + a-) operator brings intensity, in first order, to 

phononic transitions for which the quantum number n changes by ±2. However, the 

contributions firom that operator to such transitions which carry sufficient intensity from 

linear coupling to be relevant to linear and nonlinear optical experiments are small for 

r > 0.7. The effect of the (a"*"~ + a-) operator on transitions for which the quantum number 

change is odd is also small for such r-values (see below for supportive results). The vertical 

transition frequency from Eq. (5) is 

Qv =a+(o ' (2 - r - ' )^ / - /2  
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The most important effect from quadratic coupling for systems of the type we are interested 

in has to do with sequence structure in the absorption spectrum, i.e. n" = n' transitions which 

carry different frequencies, one result of which could be beats in photon echo decays. The 

relative intensities of such transitions depend, of course, on temperature. Importantly, the 

expression for Hg given by Eq. (5) retains the sequence structure. 

We turn next to the two-point correlation function J(t) whose Fourier transform yields 

the linear absorption spectrum. In the Heisenberg pictiu-e,'^ 

with p„ = exp(-8H„)/Trrexp(-pH„)], P = (kT)"'. <•••> denotes quantum mechanical trace 
O S  9  

(Tr) over the nuclear degrees of freedom. Because we are in the Heisenberg picture, the 

electronic transition dipole moment operator v(q) is time-independent. In the Condon 

approximation, which we employ,36 the dependence of v on the vibrational coordinates q is 

lost, i.e. v(q) = v(0), a constant whose magnitude squared contains the square of the pure 

electronic transition dipole. Setting |v(0)l- multiplied by other constants equal to 1 for 

convenience, we are left with 

to evaluate with Hg and Hg given by Eqs. (3) and (5). In doing so we employed coherent 

states for the phonon field rather than number states. The reader is referred to refs. 39-42 for 

discussions on advantages gained in utilization of coherent states as a complete basis set. 

Appendix A reviews some basic properties of coherent states, including their evolution under 

(7) 

(8) 
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the time-evolution operator. We mention here only that a coherent state \z) is an 

eigenvector of the non-hermitian lowering operator a, 

ak )  =  zU) ,  (9) 

where the eigenvalue z can be complex, that U) can be expressed as a superposition of 

phonon number states and that coherent states obey a special type of closure relationship: 

K J (10) 

where d-z = d(Re z) d(Im z). It is the elimination of the a"*"" and a- operators from Hg that 

allows for relatively straightforward evaluation of J(t;T). The result is'^^ 

jHjih -iHjin .  \  -  iC  """ 0 I - )  
( z l l )  

f , > 

Q \ h )  
exp 

( I I )  

(12) 

where Q = Tr(exp(-pHg)] is the canonical partition flinction. 

0 = [2 sinh(|3;ico72)r', 

^ = g-P/lto"/2 ^-((co'-Q)")r/2 

y _ |^_gJ3/lQ)"+((a)"-(o')f 

and 

(13) 

(14a) 

(I4b) 

(14c) 
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The derivation of Eq. (12) leads to Sgff = (2-r-')2d2/2 which contains a term of higher order 

than should be retained. For this reason and because the first term of Eq. (14d) should cancel 

out the contribution to Qy from the optical reorganization energy in the last exponential of 

Eq. (14a), we use in what follows 

With this equation and Eq. (6), Eqs. (14a) and (14d) become 

(14a)' 

and 

/ , .V  -1) .  

At this point it is important to establish the reliability of J(t;T) as given by Eq. (12); 

i.e., one need check the Franck-Condon (FC) factors. The easiest way to do this is to Fourier 

transform J(t;T) to obtain the linear absorption spectrum: 

+00 

a(Q) ;D=:^  J  Jir,T) e''" dt 

(16) 

The result is (Appendix B): 
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CI JO 

Q-(1=0 ' „"=0 

2] ^ (-ir'i-^" 
(4X,^)'"(2m)!e, 

(w!)" (rt"-w)! (/w + 01 (m - C.) 

X [6(5 -/?co')+ 5(5 + to')] 

where Zp is the von Neumann symbol (Eg = 1, = 2 for ^ > 1) and 

5 =co -Q-circo'+(a)"-(o')(«"+l/2). 

Sgff is defined by Eq. (15). In Eq. (17) n" is the initial state quantum number of the 

absorption transition. We performed calculations which confirmed that Eq. (17) and the 

numerical Fourier transform (FT) of Eq. (12) yield identical spectra. Franck-Condon factors 

for n"^n' transitions can be obtained from Eq. (12) by setting the value of n" and the value 

of CO for the n"-^n' transition of interest. One then sets the (1 - exp(-|3/ico")) and exp(-n"p/} 

co") terms equal to unity and adds the terms in Eq. (17) whose delta functions give the coiTect 

co-value. All appropriate delta functions are then set equal to unity. This procedure is 

somewhat cumbersome for hot transitions. For cold transitions, n" = 0, it is simple because q 

in Eq. (17) is n' and m and £ are zero. Table [ compares our approximate FC factors for a few 

transitions with the exact FC factors calculated using harmonic oscillator waveflinctions witli 

Mathematica 2.2. (We confirmed that, for pure linear coupling, Eq. (17) gives FC factors in 

exact agreement with the values calculated using the latter method.) The results given in 

Tables I and H are for r = 0.7 and 0.8 and S = 0.8 (Table I) and 2.0 (Table II) with S = dVl. 

Sgff in Eq. (17) is determined using Eq. (15). Overall, the agreement between the 

approximate and exact FC factors may be said to be quite satisfactory. (The agreement for 
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r = 0.8 is better than for r = 0.7.) As expected, the agreement for small FC factors worsens. 

However, the associated transitions would contribute relatively weakly to the absorption 

spectrum. Furthermore, for small FC factors anharmonic or even Duschinsky contributions 

to the intensities can be expected to be non-negligible. Also included in the tables are 

approximate FC factors calculated using the bottom equation on p. 121 of Englman^^ which 

is restricted to cold transitions. We conclude that for r > 0.7, the excited state vibrational 

Hamiltonian given by Eq. (5) for linear and quadratic coupling is a useful approximation for 

condensed phase phononic transitions which contribute significantly to the absorption 

spectrum. Condensed phase systems which exhibit r-values smaller than 0.7 for the 

intermolecular modes should be rare. 

B. A Linear Response Function for a Multi-Mode System with Linear Electron-
Phonon Coupling 

The response function for the case of linear coupling only is obtained from Eq. (12) 

by setting co' = co". For the multi-mode system 

Ji(t;T)=e\v[-g{t;T)], (19) 

where the line-shape function 

(20) 

J 

with] labeling the mode and 

g j ( f ,T)=Sj  C0th(p /2(0y /2) ( l -cos (coyf )J  +  i  s in (Q)y r )  .  (21) 



www.manaraa.com

78 

Equation (21) is a well-known result (for convenience we set the adiabatic electronic energy 

gap, Q, equal to zero). Since damping isn't included, the FT of Jf(t;T) yields an absorption 

spectrum consisting of delta-function peaks, see Eq. (17). The problem, therefore, is to 

introduce damping(s) in a way that yields physically acceptable spectra. 

The linear response and lineshape functions which follow stem from our study of the 

consequences of the MBO model (see Chap. 8 of ref. 15) for linear absorption and hole 

burned spectra (unpublished results). We propose a phononic contribution to J(?(t;T) of the 

form 

(22) 

where 

gP"{f,T) = Y, sf{t-,T) (23) 
j  

and 

gf\t\T) =5y|coth(pftcoy /2)-e~^-''''^"[coth(P/icoy /2)cos(0yO-' sin(cOyr)]|. (24) 

Here, yj is the damping constant of mode j and Sj and coj are its Huang-Rhys factor and 

frequency. The FT of exp[-gj'\t;T)] yields a delta-function lineshape for the ZPL and, for 

example, widths (fwhm) of nj y j for the "cold" phonon transitions, nj = 0 nj =1,..., vide 
f  

infra. The linear dependence of the width on nj is expected for a decay mechanism of mode 

j that is linear in its coordinate. Let ygi be the actual width of the ZPL. The response 

fimction 

(25) 
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with J^'\t;T) given by Eq. (22) and 

y'-''(r;n = exp(-Y,/(r)|/|/2), (26) 

yields a ZPL with a width of ye|. (We remind the reader that the temperature dependencies of 
II I 

Yei and the yj's depend on the mechanisms of dephasing.) For the nj = 0 nj = 0,1.... 
I 

progression, the widths of the members are y + nj y j. Clearly the addition of ygi to the 

widths of the cold multi-phonon transitions has a physical basis. 

The FT of Eq. (25) for mode j is (Appendix C): 

uu uu 

a J (0) y; r) = exp[-5y coth(p;2CD j / 2)] ^ ̂  
^=0 

(Yc/ +(m + 2£)yy)/27t 

(5ycsch(p;ic0y/2)) 
m+2e 

C \ r { m + ^  +  l ) 2  ( m + U )  
• exp(wp/i(o / 2) 

(CO- m v i j ) -  +((YG/ +(/M + 2^)Yy)/2 

(27) 

where f is the gamma function. This equation describes the absorption spectrum associated 

witli mode j. As expected from Eq. (24) and Eq. (26), the last term in Eq. (27) leads to 

Lorentzian lineshapes for ail bands. Unfortunately, the complexity of Eq. (27) does not lend 

itself to ready visualization of the absorption spectrum. Tlie presence of (m+2^)yj in the 

Lorentzian suggests that there can be negative contributions to cj. However, tlie properties of 

tlie r function are such that r(m+^+l) =± oo for (m+2£) < 0 so that negative contributions do 

not arise. Figure 1 shows a spectrum calculated with Eq. (27) for ©j = 25 cm~', Sj = 1.8, y 

J = 3 cm~^ Vgf = I cm~^ and T = 50 K. The spectrum calculated by taking the numerical FT 

of the response function is identical. The sharp ZPL appears superimposed on the broader 
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(1,1) and (2,2) transitions. The effects of folding, which lead to larger widths for higher 

quantum number transitions, are also apparent. Further discussion of folding is given later. 

In Appendix C we show that with Ygi = yj = 0, one recovers the well-known frequency 

domain result (see, e.g., Eq. (8.43) of ref 15): 

CTy((o;n = exp -Sj cothl 
f /• 

2 
^ exp(/np/ico j / 2) (r„) 5(co - mco j), 

J //JS-OO (28) 

where Zq = Sj csch(P/icOj/2) and Im(Zo) are modified Bessel functions. We have also proven 

that^J Eq (27) is mathematically equivalent to Eq. (17) of Hayes et al.,-"^ an equation whose 

structure is quite different than that of Eq. (27). In that paper, Eq. (17) is the basis for a 

frequency domain theory of hole burned spectra. By setting coth(p/2COj/2) = I in Eq. (24) and 

taking the FT of Jj^(t), Eq. (25), one obtains for the T = 0 BC spectrum: 

CTy(co) = exp(-5y)2^ 
m=0 

m\ 

(Yc/ + r } r ( j ) / 2 %  

( n - m o i j } -  + { ( y , i - h m y j ) / 2 j  
(29) 

with { } a normalized Lorentzian with widths given by 

{fwhm)^^y^i^my J (30) 

for the progression members, m=0,l,.... Here, the nature of the folding is clear and one has 

the desired result that Ygi, from pure electronic dephasing, adds to the widths of the multi-

phonon transitions. Equation (27), with its Poisson distribution for the Franck-Condon 

factors, can also be obtained starting with Eq. (27). The derivation is quite lengthy and will 

be given elsewhere.'^^ 
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nh 
In summary the postulated response function Tj?(t;T) of Eq. (25), with J f and 

defined by Eqs. (22) and (26), leads to a frequency domain expression for the absorption 

spectrum, Eq. (27), which yields physically reasonable spectra, as will become more 

apparent. Thus, single site absorption and hole-bumed spectra at finite temperature can be 

conveniently calculated by numerically Fourier transforming Jjf(t;T), see subsection D. As 

written, J£(t;T) yields Lorentzian lineshapes for all transitions. The modifications necessary 

to introduce different lineshapes are discussed in the final section of the paper. 

C. A Linear Response Function for a System whose Modes are Either Linearly or 
Quadratically Coupled 

As pointed out in the Introduction, there appear to be a number of systems of 

chromophores in amorphous solids where modes are either linearly or quadratically coupled. 

We consider first pure quadratic (q) coupling. The linear response function for the case of no 

damping is given by Eq. (12) with Sgff set equal to zero. Guided by the mathematical 

insights gained in the development of J;(t;T), Eq. (25), we were led to the following 

expression as a potentially useful response function which includes damping (dephasing) of 

the phonons and pure electronic dephasing (ygi): 

J^ir,T) = jP'\r,T)-r'{r,T), (31a) 

with J®' defined by Eq. (26) and the phononic (ph) contribution to the response flinction given 

by 

with 

j 
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- { i n w ]  - a m r m ] ) ! / !  
j P  ( f T )  =  ;  .  

The FT of Eq. (31) yields a delta-function line shape for the ZPL (nj = 0 -> nj = 0 

transition) and widths for the nj -> nj = nj sequence transitions of 

iJwhm)n"j = n'j yj ; ri'j = 1,2,..., (32) 

where yj is the width of the nj = 1 nj = 1 transition. For the sake of brevity we do not 

give the proof of Eq. (32), but see discussion of Fig. 2, vide infra. The FT of Jqj(t;T) 

multiplied by J®'(t;T) (Eq. (26)) yields a width of 7^1 for the ZPL defined above. 

Equation (32) becomes 

{Jwhm)^-_ = y^i +n"j jj; n] = 0,1,.... (33) 

With the results of this and the preceding subsection, the response flmction for a 

system whose modes are either linearly or quadratically coupled can be written as 

7 , . ,  ( / ;  T )  =  yf" ( ( ;  T )  •  / , < " • ( / ;  T )  •  J ' '  ( / ;  T ) , (34) 

with the three terms on the R.H.S. defined by Eqs. (22), (31b) and (26). Equation (34) is the 

main result of this paper. Figure 2 shows the absorption spectrum calculated by taking the 

numerical FT of Eq. (34) for a model system consisting of one linearly {I) mode and one 

quadratically (q) coupled mode. For the former, co^ = 200 cm~^ = 0.70, = 5 cm*' and 

for the latter, cOq =50 cm~^ cOq =35 cm'^ andyq = 2 cm'^. ye[, is set equal to I cm~^ and 

T = 100 K. The location of the ZPL at - 7.5 cm~^ is a zero-point energy effect due to the 
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quadratically coupled mode. The width of the ZPL in Fig. 2 is 1 cm~', as expected since y 

gl = 1 cm"'. The measured widths of the (1,1 )q and (2,2)q sequence transitions to the left of 

the ZPL are 3 and 5 cm~', in accordance with Eq. (32). The cold (1,0)^ transition due to the 

linearly coupled 200 cm~' mode carries a width of 5 cm"', in accordance with Eq. (30). To 

the left of the (1,0)^ band are the sequence transitions due to the quadratic mode. The 

measured width of tlie band to the immediate left of the (1,0)^ band is 7 cm~', which is the 

sum of Yei = I cm"' and the phononic contributions to the widths of the (1,1 )q and (1,0)^ 

transitions. 

D. Application to Real Systems 

The lowest energy (S i(QY) <- Sq absorption band of tlie special BChl a pair (P) of the 

bacterial reaction center has been investigated in detail using hole burning spectroscopy.-^ 

For Rb. sphaaroides this so-called P-band is characterized by strong linear electron-coupling 

involving modes centered at co^ = 30 cm"' and cojp = 120 cm~'. The former is most likely 

due to protein phonons. The Huang-Rhys factor S^, = 1-8 and tlie effective damping constant 

is Ym ~ 30-40 cm~'. In the calculations which follow a value of 20 cm"' for was used in 

order to enhance the structure in the single-site absorption and hole burned spectra. The 

120 cm"' mode is referred to as the special pair marker mode. Its effective damping constant 

is Ysp = 25 cm"' and its Huang-Rhys factor is Sjp = 1.5. At sufficiently low temperatures tlie 

homogeneous width of the pure electronic transition is 5 cm~' due to the I ps primary charge 

separation process that depopulates the excited state. The hole burning results indicate that 

the width of the ZPL remains constant at 5 cm~' between 1.8 BC and 15 K, at which 

temperature the ZPH is nearly Franck-Condon forbidden. Thus, over tliis temperature range 

the contribution to the homogeneous width of the ZPL from interaction with the bath modes 

is negligible. 
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The upper frame of Fig. 3 is the 0 K single-site absorption spectrum of the special 

pair calculated with Eq. (25). The parameter values given above were used. The spectrum is 

very similar to that calculated by Reddy et al.^^ in the frequency domain. The washing out of 

structure for die higher energy bands is due to folding. The spectrum for 15 K is shown in 

the bottom frame of Fig. 3. The most significant difference between the 0 K and 15 K 

spectra is that the ZPL of the latter is considerably weaker. This is due to a reduction in its 

PC factor stemming from the linearly coupled 30 cm~' mode. Also, the lower frame shows a 

hot band at co = - 30 cm~' due to (0,1) transition. 

We now extend the calculations to the hole burned spectrum of the P-band. The 

absorption spectrum following a burn for time x is given by22-24 

-KO 

a^(co;r) = I 7;(o) -Q)exp[-it7^(co5 -Q)T:], 

(35) 

where Q is the frequency of the ZPL of a single absorber and coq is the bum frequency. 

X(Q - Vn,) is a Gaussian function, with variance w^ centered at which governs the 

distribution of ZPL frequencies due to structural heterogeneity, k is the product of three 

terms: the absorption cross-section, tlie laser bum flux and the quantum yield for hole-

buming. (co - Q) is the absorption spectrum of a single site whose ZPL frequency is Q. 

Note that for t = 0, Eq. (34) is the inhomogeneously broadened absorption spectrum. Tlie 

hole-burned spectrum is defined here as CT^(CO;T) - ao(co;T). The 0 K (upper frame) and 15 K 

(lower frame) hole burned spectra shown in Fig. 4 correspond to the single site absorption 

spectra of Fig. 3. The value for the standard deviation of x(^^ - v^^) used was 64 cm~' (v 

in was set equal to zero with cob set equal to vu,). kr was set at 0.004. The calculation of ct^( 

co;T) involved'*^ taking the numerical Fourier transform of Eq. (25). The agreement between 

the 0 BC hole burned spectrum of Fig. 4 and the experimental spectrum^^ as well as the 
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spectrum calculated using the frequency domain theory of Hayes et al.-"^ (not shown) is good. 

Note the very weaic intensity of the ZPH at ©b which carries a width of lygj = 10 cm~', as 

expected.'^'' The weakness of the ZPH can be understood from its FC factor, 

n exp[-2{Sn,(n(cOn,) +1) +S5p(n(cOsp +1)}], where the ri's are thermal occupation numbers. 

For T = 0 K, the FC factor is exp(-6.6) = 0.0014. Elevation of the temperature to 15 K, is 

sufficient to significantly reduce the intensity of the ZPH, in agreement with experiment.-^ 

The effect of increasing from 20 cm~' to 40 cm~', the value used in ref. 24, would be to 

significantly fill in the valley between the ZPH at coq and the phonon sideband hole at cog + 

Mni, resulting in an apparent weakening of the ZPH. 

As a final application we consider the chromophore APT in hyperquenched glassy 

films of ethanol which has been thoroughly studied by nonphotochemical hole burning 

spectroscopy.'"^ This system is characterized by a linearly coupled mode with co,? = 25 cm"', 

Sf = 0.5 and ~ 10 cm~' and a quadratically coupled mode with coq" = 50 cm~' which is 

responsible for dephasing of die zero-phonon transition. For the calculations we set co 

q' = 35 cm~' which represents a 30% frequency change. The temperature dependent data of 

ref. 17 indicate that Yei(T) = 8 n (cOq") cm~' and, furthermore, that yq(T) = 5( n(cOq")+l) cm" 

' when the theoretical model of Jackson and Silbey-' is used, je taken to be temperature 

independent. The single site absorption spectra for T = 15,60 and 100 K shown in Fig. 5 

were calculated by numerical FT of Eq. (34). In all three spectra the ZPL is located at - (50-

35)/2 cm~' relative to 0 cm~' which would be the position in the absence of quadratic 

coupling. At 15 K (top frame) only the ZPL and cold (1,0)^ transition is observed. At 60 K, 

the sequence (l,l)q transition and hot (0,1)^ transition appear as well as the (2,0)^ band. 

Structure is diminished at 100 K (bottom frame) due to the higher probability for multi-

phonon transitions and sequence transitions with larger n" values as well as folding and the 

temperature dependencies imposed on ygi and yq. At 300 K all structure is lost (result not 

shown). 
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III. CONCLUSIONS 

This paper is the result of our interest in understanding the relationship and 

differences between the optical coherence loss of a chromophore in a glass and in the liquid 

phase of the glass forming solvent.Linear response functions were presented which allow 

for a consistent approach to the calculation of single-site and inhomogeneously broadened 

absorption spectra and hole burned spectra. The response functions are appropriate for 

systems whose modes are underdamped. Two cases were treated: a system whose modes 

exhibit only linear electron-phonon coupling (Eq. (25)); and a system whose modes are either 

linearly or quadratically coupled (Eq. (31a)). The response functions take into account pure 

electronic dephasing, Ygj, which is responsible for the homogeneous widtli of the ZPL. 

Furthermore, adds to the widths of the multi-phonon transitions, a result which has a 

physical basis. As expected, the widths of the multi-phonon, sequence and combination 

transitions exhibit folding. The phononic contribution(s) to the response functions of 
II I 

Eqs. (25) and (3 la) lead to folding of the widths of multi-phonon, sequence (nj = nj) and 

combination band transitions. For example, the widths of the cold multi-phonon progression, 

nj- = 0 -> nj, are given by Ygi + nj yj, where yj is the damping constant for mode j. The 

linear dependence on the excited state mode quantum number, nj, is expected for damping 

mechanisms which are linear in the coordinate qj of mode j. Mixed crystal spectra, taken at 

liquid helium temperatures, have shown this dependence (see, for example, refs. 31,53). 

Mechanisms that yield such a dependence include the Duschinsky effect where, in the excited 

state vibrational Hamiltonian, one has qj Qp terms (with the Qp's the bath coordinates), and 

anharmonic coupling terms that are linear in qj. (The Duschinsky effect is actually the decay 

mechanism for the primary oscillators of the MBO model, see Chap. 8 of ref. 15). 

From the properties of Fourier transforms, it follows that our response functions yield 

Lorentzian lineshapes for all phonon transitions. In amorphous hosts structural heterogeneity 
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can result in a distribution of frequencies for the primary oscillators. The modification of the 

response functions required to take into account such in homogeneity is straightforward. For 

example, if one desires Voigt profiles, one need only multiply exp(- Yjlt|/2) in the response 

functions (see Eqs. (24) and (31c)) by exp(- A j t^/l), where is the variance of the 

distribution of ooj frequencies. In the limit yj « Aj, the folding of the aforementioned cold 

multi-phonon progression carries a (nj)"" -dependence, rather than an nj-dependence.'^ 

An approximate excited state vibrational Hamiltonian (Hg of Eq, (5)) which accounts 

for linear and quadratic electron-phonon coupling and Is acceptable for mode frequency 

changes smaller dian about 30% was derived as was the linear response function it gives rise 

to for the case of no damping (Eq. (12)). Inclusion of damping for a system whose modes are 

both linearly and quadratically coupled results in a complex linear response function. (The 

complexity is far greater for the non-linear response functions associated with photon echo 

spectroscopies.) Thus, we presented only the response function for a system whose modes 

are either linearly or quadratically coupled. Nevertheless, our approximate Hamiltonian 

should be useful in future studies devoted to derivation of linear and non-linear response 

functions for systems whose modes are both linearly and quadratically coupled. 

As stated in the Introduction, the combination of temperature dependent hole-burning 

and photon echo studies above and below tlie glass transition of the solvent should provide 

new insights on optical coherence loss of chromophores in liquids. The results presented will 

be applied to photon echo spectroscopy in a subsequent publication.'*^ 
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APPENDIX A 

Coherent states form a complete and non-orthogonal basis set. They are very useful 

in radiation theory and quantum optics. The coherent state z is an eigenvector of the non-

hermitian operator a. The eigenvalue equation for the vector z; is 

a z  = z \ z  (Al) 

Thus z, which can be complex, is the eigenvalue of a. We can express z in terms of the 

number states n/ as 

»-o (A2) 

One of the most appealing properties of coherent states is that they can be chosen to be 

unnormalized states by setting Cq = I. Since |n) can be written as 

W=^lo), 
V"! (A3) 

where lO) is the vacuum state of the oscillator, Eq. (A2) becomes 

|z) = exp(2a'")|0> 

Applying a to Eq. (A2), one obtains 
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(A6) 

(A7) 

(A8) 

Equations (A7) and (A8) siiovv that |z) Is an eigenvector of a with eigenvalue z. Coherent 

states lack property of orthogonality because 

(rU') = exp(r*r')9iO. (-^9) 

With Eq. (Al) one can show that 

exp(c6t)|r) = exp(cr)U) ^^jO) 

where c is a constant, while with Eq. (A4) it follows that 

exp(ca^) l r>  =  |r + c>. 

Note that expCca"*") acts as a translational operator in coherent state space with the 

translational parameter c. 

We now show how a"*" acts on I z). By taking the hermitian conjugate of Eq. (A 1), we 

obtain 

k>a-=r*(z| (A12) 
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Using Eq. (A4), 

a'^\i) = a'^ exp(2a'*')l0) 

-5/ 

(A13) 

(A14) 

(A 15) 

Recall that (z|z) ̂  1. Equation (A 15) confirms tliat exp(c a"*") is a translational operator. 

We next show how I z) evolves in time under the time evolution operator exp(-iHgt//i 

). 

i x p i - i H  t  / h )  I -(0)) = 12 { t ) ) .  
(A 16) 

Using Eq. (A2) one obtains 

e x p { - i H g t / n \ z { 0 ) )  =  ̂  ̂ e x p - / c o " ( a ^ a + ) ^ ) r  \ n )  
n=Q 

= exp(-/ff) " t / 2 ) /  - i =  exp(-mco" r) i n )  
~ V/7! 
n=0 

00 

= exp(-ico'7/2) ^ 
[rexp(-/a)'7)f 

•In\ 
n~0 

• \ n )  

= exp(-/co'7/2) |expH'co"0 2(0)) 

= k(0> (^1) 

(A17) 

(A18) 

(A19) 

(A20) 

To operate with expC-iHgt/Zi) on | z(0)), one of the followdng approaches may be 

used: Feynman's formula for noa-commuting exponential operators,Lie algebra for 



www.manaraa.com

95 

disentangling non-commuting exponential operators,30 or Inverse Campbell-Baker-Hausdorff 

formula (Zassenhause formula).50-52 All tliree approaches worked equally well when we 

eliminated the a- and a"*"" operators in Hg. The Lie algebra approach was found to be 

straightforward for pure quadratic coupling. We found that using the Zassenhause formula 
2 

without eliminating a^ and a"^' led to an unrecognized pattern of infinite terms which we 

were not able to simplify. 
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APPENDIX B 

Here we provide a derivation of Eq. (17) starting with Eq. (12). We define a; = 

exp(f3) (f3 is given in Eq. (14d)), upon power series expansion we obtain. 

a, ==xp(-%)2^ 
<,=0 ( B L )  

We have 

f t ^ 

0\f\) I _^,-p/l(0"+/•(«"-(O'V 
(B2) 

where Q is tlie adiabatic gap and, from Eq. (13), Q = [2 sinli(P^ico"/2)]~' = exp(-p/icD"/2) 

* [1 - exp(-p/zco")]~l. For notational simplicity we define 

h =% -1)2 ^-a.a, 
(B3) 

where a, = -% e'""' (e"'"'' -1)" and « scf-P'""""'*'""'-'"''. With Eqs. (B1)-(B3), J(t) 

becomes 

a 2a 

l -a  (B4) 

With J(t) in this form, one can utilize the generating function for Laguerre polynomials: 
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CO 

e x p [ - a 2 a / ( I ^  L ^ ( a 2 ) a "  
r t "=0 (B5) 

With Eq. (35), J(t) becomes 

</=0 ' • n"=0 (B6) 

Equation (B6) needs further simplification which can be accomplished by noting that 

a2 = 45^^ sin" (co7 / 2) and ^n"(^2) rewritten as 

n 

C(a2) = X (-1)' 
m=0 

f n" ^ 

\n"-mj 

a? 

(37) 

J(t) can now be written as 

C V"" ^ i^ejT ^ '"' )^ 
/(0 = -^exp(-V)2^ 2^ 

q=0 n"=Q r- Z 
./n=0 

[4%sin-(co7/2)r 
ml 

• > a  

(38) 

The [sin(co't/2)]-'^ factor can be dealt with using the following identity 

siii(o)7/2)"'" =2"-'" (2/«)l^ 
— (-1)^ g^cos(2^cQ7/2) 

(m + £)I(m-0! 
e=o (B9) 
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Equations (B8) and (B9) lead directly to Eq. (17) via a straightforward Fourier transform. 
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APPENDIX C 

This appendix shows the derivation of Eq. (27) and the recovery of Eq. (28). J f (t;T) 

for one mode is (Q = 0) 

= exp|-y^/1^1/2-5y cotii(PftcOy I 2 )  +  S j  e  ^j^coth(p/iMy /2) cos(coy/)-/sin(coyO | 

(CI) 

which can be rewritten as 

T) = exp[-yg/|/|/2 - Sj codi(P^cOy / 2)] expjs'y ^coth"(p/icOy /2) -1 cos(cOy/ - (py) 

(C2) 

Here, 

(p j = arctan 

/ ^ 
-i 

coth(Pi^20)y Hj 
= - /p / jco , /2  (C3)  

To proceed further, one needs to decompose Eq. (C2) by using the generating function for 

modified Bessel functions, 

J f  { t ; T )  =  exp[-y|r|/2 -S j  coth(P^cDy / 2)] 

(C4) 

X ^ |/„,^5'yCSCh(P^{Dy /2)t? exp(//w<0y^ -WP^COy /2) 

m=-oo 

The times dependent argument of maices Fourier transform very difficult. However this is 

dealt with by using the definition of Im(Wj): 
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f j x r  ! ' ^ s t n + l f .  { W j n y  

n r { m  +  l  +  \ y  l=Q ^ ' 

where 

Wj H 5y csch(p;jcoy / 2) . (C6) 

Substitution of Eq. (C5) into Eq. (C4) results in 

_ r 1 f'S'y csch(p/ico y / 2) 
y,(r,D = exp[-cothCP^o); /2)] X Z 

/)i+2<; 

/n=-oo ^=0 ^ ! r ( /77+^+i)  

X exp(mP^G) y / 2) exp - /mco yr - + 2^)y y + y e/ )| ̂ |/2 

(C7) 

The Fourier transform of Eq. (C7) leads directly to Eq. (27). Note that we have switched the 

signs in exp(imG)jt - mp/ic0j-/2) so that the high and low energy sides of the spectrum relative 

to the ZPL have positive and negative energies, respectively. 

Finally, Eq. (28) is obtained from Eq. (C4) by setting Yei = Yj = 0: 

CO 

i(C/;r) =exp[-Sj coth(pftm^. /2)] ̂  e"®""''" 

m=-«3 (C8) 

X l^Sj csch(P^coy / 2)] exp(-/mcoyf). 

Straightforward Fourier transformation of Eq. (C8) leads directly to Eq. (28). 
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Table 1. Franck-Condon factors for S = 0.8 and r = 0.7 and 0.8 (in parenthesis). 

(n', n")® Equation (17) Exact'' Englman^^ 

(0, 0) 0.63 (0.55) 0.51 (0.49) 0.46 (0.45) 

(1,0) 0.30 (0.33) 0.40 (0.39) 0.28 (0.28) 

(2,0) 0.070 (0.10) 0.091 (O.Il) 0.087 (0.089) 

(3,0) 0.010 (0.020) 0.0040 (0.013) 0.0200 (0.020) 

(0.1) 0.29 (0.33) 0.28 (0.31) 

(1,1) 0.19 (0.088) 0.057 (0.040) 

(2,1) 0.34 (0.32) 0.43 (0.37) 

(3,1) 0.14 (0.19) 0.22 (0.24) 

(0,2) 0.066 (0.10) 0.13 (0.14) 

(1,2) 0.34 (0.32) 0.17 (0.21) 

(2,2) 0.023 (0.00020) 0.00044 (0.013) 

(3,2) 0.29 (0.21) 0.30 (0.23) 

(0,3) 0.010 (0.020) 0.053 (0.048) 

(1,3) 0.14 (0.19) 0.17 (0.19) 

(2,3) 0.29 (0.21) 0.044 (0.068) 

(3,3) 0.0035 (0.048) 0.055 (0.083) 

^n" and n' are die initial and final electronic state vibrational quantum numbers, r = co'/co". 
''Calculated using Mathematica with exact harmonic oscillator waveflinctions. 
'^Calculated using the equation on p. 121 of ref. 35. 
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Table 2. Franck-Condon factors for S = 2.0 and r = 0.7 and 0.8 (in parentheses). 

(n', n")a Equation (17) Exact'' Englman*^ 

(0, 0) 0.32 (0.22) 0.19 (0.17) 0.14 (0.14) 

(UO) 0.36 (0.33) 0.37 (0.33) 0.14 (0.14) 

(2,0) 0.21 (0.25) 0.30 (0.29) 0.068 (0.068) 

(3, 0) 0.080 (0.13) 0.12 (0.15) 0.022 (0.022) 

(0, 1 )  0.36 (0.33) 0.26 (0.27) 

(1,1) 0.0070 (0.056) 0.077 (0.10) 

(2,1) 0.13 (0.042) 0.045 (0.017) 

(3,1) 0.24 (0.19) 0.27 (0.20) 

(0,2) 0.21 (0.25) 0.22 (0.24) 

(1,2) 0.13 (0.042) 0.0024 (0.0012) 

(2, 2) 0.13 (0.17) 0.14 (0.15) 

(3,2) 0.0061 (0.016) 0.016 (0.043) 

(0,3) 0.080 (0.13) 0.15 (0.16) 

(1,3) 0.24 (0.19) 0.068 (0.077) 

(2,3) 0.0061 (0.016) 0.0610 (0.070) 

(3,3) 0.17 (0.11) 0.046 (0.040) 

^n" and n' are the initial and final electronic state vibrational quantum numbers, r = co'/co". 
''Calculated using Mathematica with exact harmonic oscillator waveflmctions. 
"^Calculated using the equation on p. 121 of ref. 35. 
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FIGURE CAPTIONS 

Figure 1. Single-site absorption spectrum calculated with Eq. (27) for a model system: co 
j = 25 cm-'; Yj = 3 cm"'; Sj = 1.8; ye| = 1 cm"' and T = 50 K. The spectrum 
calculated by taking the numerical FT of Eq. (25) is identical. 

Figure 2. Single-site absorption spectrum for T = 100 K calculated by taking the numerical 
FT of Eq. (34) for a two-mode system with one mode linearly coupled (f.) and the 
otlier quadratically coupled (q): co^ = 200 cm"'; = 0.7; = 5 cm"'; co 
" = 50 cm"'; 

CO ' = 35 cm"'; Yq = 2 cm"' and = 1 cm"'. q 

Figure 3. Single-site absorption spectra for tlie special pair of the bacterial reaction center 
calculated with Eq. (25) at T = 0 K (top frame) and 15 K (bottom frame) with 
cOm = 30 cm"', Sm = 1.8, Ym "=20 cm"', cOsp = 120 cm"', Sgp = 1.5, Ysp = 25 cm"' 
ancl Yei = 5 cm"', for the bottom frame is 15 cm"'; see text for more details. 

Figure 4. Hole-burned spectra for the special pair band of the bacterial reaction center 
calculated with Eq. (35) for T = 0 K (top frame) and T = 15 K (bottom frame). 
co = 62 cm"', = cob = 0 cm"' and kx = 0.004. Other parameter values are as 
given in the caption to Fig. 3. 

Figure 5. Single-site absorption spectra of Al-phthalocyanine tetrasulphonate in glassy 
ethanol calculated by taking the numerical FT of Eq, (34) with co^ = 25 cm"'. S,^ 
= 0,5, 

y^ = 10 cm-', cOq" = 50 cm-', coq' = 35 cm-', Yq = 5 (nq(c0q") + I) cm"' and 
Yel " ̂ ^q(t^q') cm-'. The top, middle, and bottom spectra are for T = 15. 60 and 
100 K, respectively. 
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CHAPTER 4. NON-LINEAR OPTICAL RESPONSE FUNCTIONS FOR 

CONDENSED SYSTEMS WITH LINEAR AND QUADRATIC ELECTRON-

VIBRATION COUPLING 

A paper submitted to the Journal of Chemical Physics 

Mohamad Toutounji and Gerald J. Small 
Department of Chemistry and Ames Laboratory-USDOE 

Iowa State University, Ames, lA 50011 
and 

Shaul Mukamel 
Department of Chemistry 

University of Rochester, Rochester, NY 14627 

ABSTRACT 

A 4-point correlation function which is valid for finite temperature is derived using an 

approximate excited state vibrational Hamiltonian, Hg, for a system whose phonon modes 

exhibit both linear and diagonal quadratic electron-phonon coupling. Tlie Hamiltonian is 

applicable for mode frequency changes due to quadratic coupling smaller than 30%. Tlie 

non-linear response functions obtained from the correlation function are used to calculate the 

impulsive 3-pulse photon echo signal for a system exhibiting very large inhomogeneous 

broadening in order to reveal quantum beats due to the frequency change of a mode tliat 

accompanies electronic excitation. Damping of die phonons and pure electronic dephasing 

are not included in the 4-point correlation function. It was determined that tlieir inclusion 

would lead to response functions of very considerable complexity. Thus, the remainder of 

the paper is concerned with the 4-point correlation ftinction and echo response functions for 

systems whose modes are linearly coupled. The response functions are expressed in terms of 

the lineshape fimction g(t;T) of Toutounji (/. Chem. Phys., submitted) which includes 

phonon damping and pure electronic dephasing. Applications of the theory are given for 
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impulsive 2-pulse photon echo signal, both time-integrated and as a function of the detection 

time t and pulse delay time T'. Attention is focused on the dependence of the echo signals on 

the linear coupling strength for a fixed temperature and their dependence on temperature for a 

fixed coupling strengtli. The initial fast non-exponential decay (free-induction) due to all 

multi-phonon transitions, quantum beats and the slow decay component due to the zero-

phonon line (pure electronic depliasing) are identified and correlated with features of the 

single-site absorption spectrum whose relationship to the hole burned spectrum is well 

understood. That pure electronic dephasing associated with the zero-phonon line contributes 

to the decay of the quantum beats is emphasized. It is suggested that this contribution may 

be non-negligible at high temperatures in certain systems. The final application is to tlie 

special pair absorption band of the bacterial reaction center. 

I. INTRODUCTION 

Recently, femtosecond photon echo spectroscopies have been used to study optical 

c o h e r e n c e  l o s s  o f  e l e c t r o n i c  t r a n s i t i o n s  o f  m o l e c u l a r  c h r o m o p h o r e s  i n  l i q u i d s . O f  

particular interest has been tlie dephasing due to inertial (librational) modes ("phonons") 

which couple linearly to the Si^-Sg electronic transition. The damping of these Franck-

Condon active phonons can lead to coherence loss on the femtosecond time scale. We 

recently suggested that'^'^^^ tlie study of optical coherence loss of chromophores in glasses 

and in the glass forming solvents could lead to a better understanding of tlie phononic 

contribution to dephasing in liquids. This suggestion stemmed from the resuhs of persistent 

spectral hole burning studies of Al-phthalocyanine tetrasulphonate in glassy waterand 

ethanol'"^ between 5 K and temperatures close to their glass transition temperature (T„), 135 

and 95 K, respectively. In the case of water it was shown that the values of the linear 

electron-phonon coupling parameters and inhomogeneous broadening of the zero-phonon 

line (ZPL, i.e. pure electronic transition), determined from the 5 K spectra, when used with 
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the expression of Hayes et al.'^ for the hole burned spectrum, provided a good accounting of 

the temperature dependence of API's hole burned spectrum. The linear electron-phonon 

coupling is dominated by a 38 cm~' phonon with a small Huang-Rhys factor of 0.55 (the 

width of the one-phonon profile associated with the 38 cm~' phonon is 45 cm~').'^ The 

corresponding frequencies for glassy ethanol and methanol are 26 and 17 cm~', 

respectively.'"' The 38,26 and 17 cm~^ phonons were assigned as pseudo-localized with 

amplitude centered on APT and nearest neighbor solvent molecules. The high resolution of 

the temperature-dependent hole spectra led to the conclusion that, at temperatures > 15 K.'"' 

the dephasing of the ZPL is due to the exchange coupling mechanism associated with 

diagonal quadratic electron-phonon coupling.'the quadratic coupling gives rise to a 

mode frequency change upon electronic excitation of the chromophore. For glassy water the 

exchange coupling was found to be due to two phonons with frequencies of 50 and 180 cm~' 

which correspond to the acoustic modes of water. For glassy ethanol, an exchange coupling 

mode of 50 cm~' was identified which coincides with the lowest energy peak in the spectral 

density of liquid ethanol. 

The combination of spectral hole burning and photon echo spectroscopies is well 

suited for determination of the similarities and differences between optical coherence loss in 

glasses and liquids which can be expected to depend on the liquid and the value of T -

T„ > 0. Of particular interest would be identification of ultra-fast dynamics from inertial 

modes unique to the liquid. Interpretation of the results of such experiments, however, 

requires linear and nonlinear response functions for finite temperature that provide a 

consistent and physically acceptable description of the single-site absorption, hole-bumed 

and photon echo spectra, as recently pointed out by Nagasawa et al.-® and Bardeen et al.-' in 

their studies of the temperature dependence of optical coherence loss of chromophores in 

polymers. 
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We recently derived an approximate excited state vibrational Hamiltonian (Hg) that, 

in addition to linear coupling, includes diagonal quadratic coupling.22 This Hamiltonian, 

which is adequate for mode frequency changes smaller than 30%, was used to obtain the 

linear response or 2-point correlation ftmction for the case of no damping that provides a 

good description of the temperature dependences of the ZPL, multi-phonon and sequence 
tt t M II » 

transitions. (Sequence transitions correspond to nj -> nj = nj, where nj and nj are the 

quantum numbers of mode] for the ground and exited electronic states, respectively.) A 

linear response fijnction for finite temperature ((J| q (t;T)) that includes damping was 

proposed for systems whose modes are either linearly (1) or quadratically (q) coupled since 

there appear to be many systems of this type. It is the product of three response functions, 

two of which are phononic with one associated with linear modes and the other with 

quadratic modes. Different modes (coj) can be assigned different damping constants, yj. (We 

adopt the convention that yj is the f\vhm of the one-phonon absorption profile in the absence 

of pure electronic dephasing.) The third response function is electronic, exp(-ye[lt|/2), with y 

el the width of the zero-phonon line. The total response function yields single-site absorption 

spectra in which folding of the widths of multi-phonon and sequence transition occurs, ygi is 

included in the widths of those transitions. For example, the widths of the nj = 0 -> nj 
I  I  

progression members are given by y ^ + nj y j (nj = 0,1,...) where yj is the damping constant 

for phonon j. That ygi adds to the widths of the multi-phonon transition has a physical 

basis.22 The linear dependence on n j (folding) is valid for any phonon relaxation 

mechanism that is linear in the coordinate of the phonon. Such folding has been observed for 

chromophores in host crystals.23.24 The structure of Ji q(t,T) is such that all transitions in 

the single-site absorption spectrum carry Lorentzian Imeshapes. However, the modification 

required to account for a distribution of values for coj due to structural heterogeneity is 

straightforward. The new response functions were found, for example, to provide a good 

description of the temperature dependence of the hole-bumed spectrum of the special pair 
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band of the bacterial reaction center. The response functions are applicable to systems whose 

phonons are underdamped, Yj < wj. 

In this paper the temperature dependent 4-point correlation function, F(X[,T2,t3,t4), 

for the aforementioned approximate Hamiltonian Hg is obtained for the case of no damping. 

In order to demonstrate quantum beats from quadratic coupling, it is used to calculate the 

impulsive stimulated photon echo signal in the limit of large inhomogeneous broadening for 

a linearly and quadratically coupled phonon. A 4-point correlation function which includes 

both phononic damping and pure electronic dephasing is derived for linear coupling only 

using the results of ref, 22 which include an expression for the phonon lineshape function, 

gPh(t;T). The 4-point correlation function defines the echo response functions which enter 

into the expression for the third-order polarization that describes all 4-wave mixing 

spectroscopies including the 3-pulse stimulated photon echo (SPE). Calculations based on 

our 4-point correlation function are restricted to impulsive echo spectroscopy because the 

computational time for pulses of finite width, relative to inhomogeneous broadening, is very 

long. Nevertlieless, the results provide a clear picture of the basic aspects of tlie echo profile 

which include the faster and slower components of the echo decay due to tlie multi-phonon 

transitions (phonon sideband) and ZPL as well as the phonon-induced quantum 

beats.-^'-^'^®"^"^ Particular attention is given to tiae dependence of the 2-pulse echo signal for 

a fixed temperature on the value of the Huang-Rhys factor S of the active phonon, the 

dependence of the signal for fixed S on the temperature, the relationship between the 

integrated echo signal and the single-site absorption spectrum and the dynamical information 

contained in die quantum beat profiles. Consistent with the widths of the multi-phonon 

absorption transitions, vide supra, we find that the pure electronic dephasing (ygi) contributes 

to the decay of the quantum beats. Finally, the 2-puIse PE signals are calculated in the low 

temperature limit for the special pair absorption band of the bacterial reaction center and 

compared with, the results of recent accumulated photon echo experiments.^^ 
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11. THEORY 

A. Background 

We begin by reviewing the equations in the book by MukameP^ that form the basis 

for tliis work, the results of which are presented in the following tliree subsections.^"^ The 

non-linear response function which governs 4-wave mixing (4WM) experiments is 

4  

a=l 

where 17?^ (r j, , ̂ 3 )| are the non-linear correlation functions, 0(tn) is the Heaviside step 

function, and t], t2 and t3 are the interaction intervals between the system and radiation field. 

vide infra. The R„'s are obtainable from the following 4-point correlation function 

F(T 1, to, t3, t4) H (11) (T2 ) (t3) (T4)) 

with 

Fgg(t) = exp[ ^ HgX^ Fge exp(^-^ ), 
(3a) 

V^g{x) = exp(^- H^xJ exp '-7 V ti ^ - (3b) 

Here, Vgg is the electronic transition dipole moment which depends on the nuclear 

coordinates of the system. Later, we will employ the Condon approximation. Hg and Hg are 

the ground and excited state vibrational Hamiltonians. Using the fact that the correlation 

fimction is invariant under time translation, it can be shown that 
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^2('^3'^2'^|) ~ '^^2-'^\ "*"^2 +^3'^l)' 

^ 3 ( ^ 2 , t 2 ^ h ) -  +^2 +^3'^I "^^2)' 

^4(^3'^2''l) = ^('1 +^2 +^3''l +'"2'^1'0) • (4) 

We mention for what follows that when the field is turned on, the first interaction takes place 

at time t-t|-t2-t3 and creates an optical coherence which evolves for a period t|. The second 

interaction occurs at time t-t2-t3 and converts the coherence state into a population state 

which evolves for a period t2. The third interaction occurs at time t-t3 and creates a second 

electronic coherence that evolves for time t3. At times t > t3 the optical polarization P(3) is 

calculated, vide infra. 

We consider the stimulated photon echo in which three pulses with wavevectors kj, 

k2 and k3 are sequentially applied to the system. The external field E(r,t) can be written as 

£(/",f) = £i(r + x'+'c)exp(/Ai • r - i ( £ > i t ) - h  E 2 { t +  t ) Q x p { i k 2  - r -Zcoi r )  

+ £3 (r) exp(//c3 • r - /CO 3/) + c.c.. 

El, E2 and E3 determine tlie temporal shapes of the pulses centered at t = - (t' +1), -t and 0, 

respectively. Thus t' is the delay between the first (Ei) and second (E2) pulses and t the 

delay between the second and third (E3) pulses. As is well-known the stimulated echo is 

centered at i' after the tliird. The echo direction of primary interest is k^ = k3 + k2 - ki (see 

pp. 297-298 of ref. 36 for discussion). The integrated intensity of the echo signal, Sspe, is: 
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(6) 

where P(3)(ka,t) third order polarization with wavevector kg induced by the external fields. 

With the rotating wave approximation and the assumption of well-separated pulses one has 

While ;^(t3,t2,ti) governs the homogeneous (dynamical) contribution to the dephasing, x(t3-

ti) governs the static inhomogeneous contribution. To relate the time arguments of Ej in 

Eq. (5) to those of Ej in P(3)(ka,t), one need recall that Eq. (7) must take into account that the 

first, second and third interactions occur at t-ti-t2-t3, t-t2-t3 and 1-13. 

In the impulsive limit, the pulses are infinitely short and the temporal field functions 

Ej become delta flmctions in Eq. (7), e.g. E3(t-t3) -> 5(t-t3). The integration is then 

straightforward and Eq. (6) becomes 

X E I  { t  +  x ' + x  - ~ t i  -^I)exp[f(C03 +©2 -C0,)R3 +/(W2 -W|)^2 - '<^1^1]  (7)  

Here, J?(t3,t2,t|) is the echo response function defined as 

(8) 

(9) 
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The fonn of the inhomogeneous broadening term x, v/Je infra, results in tlie maximum of the 

echo appearing at time t = t' after the interaction with the third pulse which we can now 

consider to have occurred at t = 0. For t > t', the echo decays due to electronic dephasing. If 

in the frequency domain the inhomogeneous broadening is far greater than the homogeneous 

broadening, E*!- (9) can be approximated by a delta function which results in 

We consider next the 2-pulse photon echo in which pulses 2 and 3 are coincident (x 

= 0) and k2 = k3, E2(t) = £3(1) and coo = CO3. Utilization of these three equalities in Eq. (7) 

leads to the expression for the polarization of the 2-pulse echo. Under the assumption that 

pulses 2 and 3 are short relative to the nuclear dynamics, meaning that the population states 

do not evolve before creation of the last optical coherence, the integration over t? can be 

eliminated and tT set equal to zero. The result is: 

(10) 

-r,)exp[/coi(/3 "^i) 

00 00 

0 0 

(11) 

where we have set co 1 = C02. The integrated 2-pulse echo signal is given by 

00 

0 (12) 
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In the calculations which follow a Gaussian profile is used for the inhomogeneous function x'-

X( /3- / i )=exp 
I t  n '  

-7W"( /3  - / [ )  (13) 

where the parameter w is related to the fwhm of the inliomogeneous profile in the frequency 

domain by fwhm = 2.35 w. For finite pulses, a Gaussian profile can be used, e.g. 

E 2 i t - x ' ) =  - e x p [ - (R- T ' ) -  /2CT-], (14) 
fines' 

where a- is the variance. 

B. Four-point Correlation Function for Both Linear and Quadratic Coupling 

Consider a system with modes that exhibit both linear and diagonal quadratic 

electron-phonon coupling. Let co" and co' be tlie ground and excited electronic state 

frequencies of such a mode. The dimensionless normal coordinate for the ground state is 

defined as q and tlie dimensionless linear displacement between the potential energy minima 

of the two states as d. The vibrational Hamiltonian for the ground state is 

/f^=fico"(a^a + l/2), 

with a"*" and a the raising and lower operators, i.e. q = + a). The exact Hamiltonian 

for the excited state, Hg, is given in ref. 22. We do not give it here, the reason being that 

even the expression for the 2-point correlation function it would give rise to is quite 

unwieldy. (It is the bilinear terms in Hg involving a"*" and a that are responsible for this.) For 

this reason we introduced the following approximate expression for Hg.---
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(16) 

where r = co'/co" and hQ is the adiabatic electronic energy gap. This Hamiltonian is adequate 

for r > 0.7 (without loss of generality we take co' < co"). The adiabatic gap is related to the 

vertical gap by 

with Sgff an effective Huang-Rhys factor that equals S = d-/2 when co' = co". The 

approximate Hg was used in ref 22 to obtain die linear response (2-point correlation) 

function, J(t;T), for the case of no phonon damping. Coherent states, rather than number 

states, were used in the derivation. We have used the same approach to obtain the 

temperature dependent 4-point correlation function (F(ti,T2,T3,T4) for die case of no 

damping, Eq. (A4) of Appendix A. It can be used to obtain the echo response functions 

(^3 'h'h)}C^)' which can be used to calculate the third order polarization for 

any 4-wave mixing experiment. 

C. Four-point Correlation Function with Damping for Linear Coupling 

The correlation function given by Eq. (A4) is a new result which we use in section III 

to demonstrate the quantum beats that arise from quadratic as well as linear coupling. 

Unfortunately, inclusion of phonon damping and pure electronic dephasing would lead to a 

very complicated correlation function which, from a computational point of view, is 

Q J, - Q + 03', (17) 

where 

(18) 
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impractical. This is not the case for linear coupling only. By setting co' = co" in Eq. (A4) one 

obtains 

F(Ti ,T2, 'C3> 'C4)=exp[-g(Xi  - t2 )  +  g( t i  - t3 ) -g(X2 "  ̂3 )  "  g( t ,  -  X4 )  

(19) 

+ g(.'^2 - t4) -g(X3 -X4)] ,  

which is identical to Eq. (8.14) of ref 36. At this point we use the expression for the 

lineshape function g(t;T) from ref 22 which is the sum of a phononic (ph) and electronic 

contribution: 

g{f,T)=:gP\t-T)^g''{f,T), (20) 

where 
N 

(21) 
y=i 

gf\t;T) = S'y|coth(P/icoy /2) |^codi(p/icoy /2)cos(coyO-i sin(coyO 
(22) 

and 

g^'inT) =y,,W2. (23) 

Insofar as the temperature dependencies of yj and ygi are concerned, one need consider 

different mechanisms and feed their temperature dependencies into the lineshape flinctions, 

which is standard procedure. 
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We note that the lineshape function, g(t;T) defined by Eq. (20) and the equations that 

follow yield a single-site absorption spectrum, which is given by 

00 

cT(oj;r) = —Re [ dt + ioit], (24) 
% J 

0 

for which the ZPL and multi-phonon transitions carry Lorentzian profiles. In amorphous 

hosts structural heterogeneity can result in a distribution of frequencies for a Franck-Condon 

active phonon. The modification of the lineshape function required to take into account such 

inhomogeneity is straightforward. For example, if one desires Voigt profiles, one need only 

multiply exp(-yj|t|/2) in Eq. (22) by exp(-A ] t" / 2), where A j is the variance of the 

distribution of coj frequencies. 

The impulsive 2-pulse echo (IPE) can be calculated by setting x = 0 in Eq. (9). Using 

the echo response fiinction, x'), obtained from Eq. (19) in Eq. (9) yields the impulsive 

2-pulse echo signal,^® S [p e (x ';T ), 

J O  

j" f//exp[-w-(r-r')-]exp{-2 Re[2g(r;r) + 2g(r';r)-g(r + r';r)]), 
0 

whose polarization is given by 

r'; r) = exp[-w-(r - r')"] exp{-2 Re[2 git;T) + 2 g(r'; T) - g(r + r'; T)]}. (26) 

in. RESULTS OF CALCULATIONS 

Figure 1 shows an impulsive SPE signal at 300 K. for a linearly and quadratically 

coupled mode defined by co" = 200 cm~^ co' = 150 cm~l and S = 2. It was calculated using 
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Eqs. (A4), 8 and 10. (Again, x' is the delay between the first and second pulses and T the 

delay between the second and third.) Although damping is not included, Fig. 1 reflects an 

important feature due to quadratic electron-phonon coupling; namely, quantum beats due to 

interference of tlie ground and excited state phonon waves. This is more easily seen by 

looking at a slice in the frequency domain obtained from Fig. 1. Figure 2 was obtained by 

performing a Fourier transform of Eq. (10) with x = 1 fs as follows 

SsPE (CO) = - Re f cix' SsPE (^') exp[(/Q) - Y )T' ]. (27) 
71 J 

0 

(To avoid delta fiinctions, a uniform damping, y, of 3 cm~' was introduced.) In addition to 

the ground and excited state fundamentals co" and co', one observes their difference 

frequency, Aco = 50 cm~' and its muhiple 2Aa) = 100 cm"'. The latter two are responsible 

for the quantum beats indicated by tlie arrow in Fig. I. Note that in the absence of 

temperature dependent data the features in Fig. 2 might be incorrectly assigned to three or 

four distinct linearly coupled modes. 

The remainder of tliis section is concerned with impulsive 2-pulse photon echo (IPE) 

results for systems with finite inliomogeneous broadening and modes tliat exhibit linear 

coupling only. Phonon damping (yj) and pure electronic dephasing (ygi) are taken into 

account. 

Figure 3 shows 0 K results for a linearly coupled mode (coj = 30 cm~', yj = 20 cm~', y 

el = 2.5 cm~' and w = 64 cm~') for tliree values of S, 0.01, 0.1 and 0.5 Integrated IPE 

signals calculated vnth Eq. (25) are given in the left panel and the corresponding single-site 

absorption spectra calculated with Eq. (24) in the right panel. For S = 0.01, the ZPL of a 

v^dth 2.5 cm~' dominates the absorption spectrum as expected for such a small S-value. 

Correspondingly, multi-phonon transitions make a negligible contribution to the echo signal 
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which is dictated by the ZPL. The decay of the echo signal is single-exponential according to 

exp(-2yejT'), where x' is the time delay, and yei(s~') = 27:c ye|(cm~') with ye|(cm~') = 2.5.-'^ 

For S = 0.1, the (1,0) phonon transition appears in the single-site absorption spectrum. Its 

appearance is reflected by that of the fundamental beat at 1.1 ps which is the period ((j)j) for co 

j = 30 cm~'. Increasing S to 0.5 results in resolution of the beat due sharpening of the feature 

labeled as PSB (phonon sideband). This sharpening or faster decay (free-induction) which 

precedes the echo is due to the increase in the Franck-Condon factors of multi-phonon 

transitions. (The contribution from the slowly decaying ZPL component to the signal at 

~ 0 ps is negligible.) One-half the inverse of tlie width of tlie PSB is an effective or average 

width for die overall profile of the multi-phonon transitions that contribute to the absorption 

band, vide infi-a. The lineshape function g(t;T) of Eq. (20) leads to widths for the cold 

phonon absorption progression nj =0-> nj =0,1,... ofyei + njyj.^^ The (1,0) absorption 

transition of Fig. 3 should carry a width of 22.5 cm~'. This was confirmed by "ruler" 

measurement of die (1,0) band for S = 0.5.'*O Because the resolved fundamental beat in the 

echo signal for S = 0.5 corresponds to the (1,0) absorption transition, the width of the beat 

profile is inversely proportional to the widtli of the (1,0) transition. Since we have defined y^i 

and yj as fwhm contributions, die widtli r(s) of die beat equals 2~KYei Yph)~'' inverse of 

the decay constant for the beat, where tlie unit of ygi and yj is circular frequency. Thus, 2~^r~ 

1 is the v^ddtli of die (1,0) absorption transition, as confirmed by ruler measurement. (To 

convert to cm~^ one need multiply 2~lr~' by (27ic)~i.) Thatygi adds to the homogeneous 

widths of die multi-phonon transition has a physical basis which is that die phonon levels 

build on the zero-point vibrational level. Thus, phononic transitions carmot be sharper than 

the ZPL. The question arises as to when the contribution from ygj is negligible. For typical 

dye molecules in amorphous solids at liquid helium temperatures it is, since ygi « I cm~' 

(Tt » 10 ps).'^l''^- However, diis situation may not hold at high temperatures. For 

example, die dependence of yei( Tt ) on temperature (5-100 K) for APT in glassy water'3 and 
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glassy ethanoU'^ was satisfactorily explained using the exchange coupling model of Jackson 

and Silbey.'^ Theoretical extrapolation to room temperature yielded an estimate of ~ 0.3 fs 

for Ti for both systems. However, the frequency of the exchange coupling mode for both 

systems is ~ 50 cm~l, which is considerably higher than observed for dye/polymer and 

dye/protein systems. Thus, it is possible that, in certain systems, Tt could approach 0.1 fs, 

which is comparable to the timescales for optical coherence loss and solvation dynamics due 

to low frequency modes that have been reported for dyes in liquids at room temperature. 

Figure 4 is a continuation of Fig. 3 with S = 1.7, which corresponds to strong 

coupling. The 3-D graph calculated with Eq. (26) shows the behavior of the echo along the 

t = x' diagonal. Following the rapid decay of the intense PSB features associated with the 

overall profile of the multi-phonon transitions, the fundamental beat at 1.1 ps and its first 

overtone at 2.2 ps are observed. (Since the FC progression in the frequency domain is 

periodic in coj, the beat pattern is periodic with features at (()j, 2(|)j,... where (j)j is the period of 

the fundamental beat, l.I ps for the case at hand. The time-integrated IPE signal calculated 

with Eq. (25) is given in the bottom frame. The width of the PSB is ~ 160 fs which 

corresponds to a multi-phonon profile width of 65 cm~' which can be compared with So) 

j = 51 cm~', where Scoj is approximately the expected width.'^^ Insert A is tlie single-site 

absorption spectrum (Eq. (24)) with a and b die one- and two-phonon transitions. The second 

overtone also appears. Folding of the widths of the phonon transitions is apparent. The time-

integrated signal with the PSB cutoff is shown in insert B. The correspondence between the 

ZPL and the beats and the ZPL and multi-phonon transitions in absorption is clear. 

We turn next to the temperature dependence of the IPE signal. Figure 5 calculated 

with Eq. (26) shows results for a model system widi ©j = 25 cm~^ S = 0.30, yj = 10 cm"', 

w = 64 cm~' and y ei CO = 8 n(a) ^) cm~^ where co ^ = 50 cm"' is the ground state firequency 

of the exchange coupling mode responsible for die pure electronic dephasing. n(co ^) is the 

thermal occupation number [exp(fto) q / k 2^ -1]"'. This model system mimics quite closely 
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APT in glassy ethanol.'*^ The top, middle and bottom graphs correspond to 15, 25 and 

100 K, respectively. (Note the changes in time scales.) For comparison of the three t.x' 

graphs it is useful to know the values of the ZPL FC factor which is given by 

exp[-S(2n(c0j)+ 1]. They are 0.70, 0.50 and 0.18 for 15,25 and 100 K. 

At 15 K the ZPL is strongly allowed and yd = 0.07 cm~' which corresponds to an 

echo decay constant of (38 ps)~'. The contribution dominates the signal seen in the top 

graph of Fig. 5. Because of the time scale the PSB appears as a sharp spike near t = x' = 0. 

At 25 K, the FC factor of the ZPL has decreased by 30% and its width is 7e| = 0.50 cm~'. Its 

echo decay constant is (5.3 ps)-'. Following the decay of the PSB, whose amplimde and 

width have increased, one observes the one-quantum beat at 1.3 ps which is the period of co 

J = 25 cm~'. Its overtone is also visible and is followed by the relatively slowly decaying 

ZPL component. At 50 K the ZPL is barely observable on the scale used in Fig. 5 (results 

not shown). By 100 K, the FC factor of the ZPL is only 0.18 and yg| = 7.6 cm~'. Its echo 

decay constant is (0.35 ps)~' which means that the ZPL component of the decay should 

appear near the tail of the PSB. However it, as well as the beats, are too weak to be 

observable in the bottom graph of Fig. 5. The physics conveyed by Fig. 5 has been observed 

by Saikan et al. in their accumulated photon echo (APE) studies of octaethylporphine in 

polystyrene.3'^ 

As a final application we present results for the special pair absorption band (P870) of 

the bacterial reaction center of Rhodobacter sphaeroides. Photochemical hole burning 

studies of P870 revealed that^'^ it is characterized by strong electron-phonon coupling 

involving two modes with frequencies (Dn, = 30 cm~^ and cogp = 120 cm~' and Huang-Rhys 

factors of Sfii = 1.8 and Sjp = 1.5 (sp denotes special pair and m the mean frequency of low 

frequency protein phonons). Based on the results of ref. 22 we used yjp = 25 cm"', y 

tn = 20 cm~^ and w = 64 cm~^ for the calculations. More recently, Schellenberg et al.^^ 

reported the results of APE experiments performed on P870 at 1.4 K. Following a fast 
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(< 100 fs) initial decay due to muiti-phonon excitation (our PSB), they observed a much 

weaker decay due to the ZPL with a decay constant determined by the primary charge 

separation time of 1.9 ps. This time corresponds to ygp 2.5 cm~' which was used in our 

calculations. An effective S-value of 1.7 was determined which most likely corresponds to 

the 30 cm~' protein phonons identified by hole burning. Quantum beats were not observed 

in ref  35 and,  thus,  a  mode frequency(ies)  could not  be determined.  Thus,  except  for  y 

el = 2.5 cm~', we used the hole burning values for all parameters. 

The results are shown in Fig. 6. The 3-D graph calculated according to Eq. (26) 

shows five features, a-e, plus the relatively slowly decaying ZPL but note that feature a, due 

mainly to the PSB, is cut off. The periods of cOgp = 120 cm"' and the combination band co 

sp + ©ni ~ cm"^ are 277 and 220 fs. Thus, they are buried by the PSB. The signal in the 

lower frame with the feature at t« 0 labeled as PSB is time-integrated (Eq. (25)). The width 

of the PSB is 54 fs which corresponds to a width of 196 cm~' for the multi-phonon profile in 

the frequency domain. This value is close to the anticipated approximate value of Sn^co 

+ SgpCOgp = 231 cm~l. Features b-d can be assigned as follows: b, c and e are the first, 

second and fourtli overtones of the fundamental quantum beat of the special pair mode while 

beat d is due to both the fundamental beat of the 30 cm~' mode with a period of 1.1 ps and 

the third harmonic of the special pair fundamental beat (see inset of bottom frame). With 

Fig. 6 the difficulty in observing the ZPL decay component and the quantum beats for strong 

electron-phonon coupling is apparent (see also Fig. 5). As mentioned, Schellenberg et al. 

were able to detect the relatively very weak ZPL component. However, quantum beats are 

not evident in their time-integrated echo signal whereas Fig, 6 indicates that if the ZPL 

component is observed, quantum beats should also be observed, A likely reason for the 

discrepancy is that in the APE experiment ~ 100 fs pulses with a width of ~ 7 nm were used 

to pump P870 considerably to the red of its absorption maximum where the probability of 

exciting the 120 cm~' special pair mode is low. This would significantly suppress the 
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quantum beats seen in Fig. 6. In addition, it has been suggested that the one-phonon 

absorption due to a single mode at 120 cm~' could be due to two or more modes in the 

vicinity of 120 This would have the effect of washing out the structure especially 

if the damping constants were significantly less than 25 cm~'. 

III. CONCLUSIONS 

New 4-point and non-linear response functions }i=i) for finite temperatures 

were obtained for a system whose phonon modes exhibit linear electron-phonon coupling 

only. The lineshape function g(t;T) firom ref. 22 used in the response functions includes 

phonon damping (yj) and pure electronic dephasing (yg]). In that paper it was shown that 

g(t;T) yields physically reasonable single-site absorption and hole burned spectra in which yg| 

contributes to the widths of the phononic transitions and folding of tlie widths of phonon 

progression members occurs. Applications of the non-linear response functions were 

confined to the impulsive 2-pulse photon echo (IPE) because of computational 

considerations. Calculated IPE signals for model systems and the special pair band of the 

bacterial reaction clearly revealed the initial fast decay due to the envelope of multi-phonon 

transitions, quantum beats and the decay of the fundamental beat and the decay due to 

dephasing of the ZPL and how these features depend on the strength of the electron-phonon 

coupling and temperature. Based on the results of ref. 22 it was expected that pure electronic 

dephasing would contribute to die decay of the quantum beats and such was confirmed. It 

was suggested that this contribution could be significant at room temperature for systems 

whose modes are sufficiendy underdamped. The features of the echo profiles/signals were 

correlated with those of single site absorption spectra which are closely related to hole burned 

spectra. The correlations illustrate the complementarity of photon echo and hole burning 

spectroscopies. 
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As discussed in refs. 13, 14 and 20, the combination of temperature dependent hole 

burning and echo studies of optical coherence loss of chromophores in glasses and their 

liquids should lead to a much better understanding of the inertial modes of liquids 

responsible for ultra-fast dephasing. In this regard, we believe our response functions can 

play an important role. The question arises as to what types of chromophores are best suited 

for such studies. The answer is rigid molecules devoid of Franck-Condon active low 

frequency intramolecular modes that can interfere with the low frequency inertial 

(librational) modes of interest. In addition, the linear electron-phonon coupling of such a 

chromophore in the glass should be weak so that the zero-phonon hole and the phonon 

sideband structure can be studied up to a temperature sufficiently high to allow for 

convincing theoretical interpretation of the data. Examples of such a system are Al-

phthalocyanine tetrasulphonate in glassy water and ethanol. Other phthalocyanines as well as 

rhodamine and oxazine dyes should also be suitable. Cyanine dyes such as IR 144. which 

was used in ref. 20, should be avoided. 

The non-linear response functions can, of course, accommodate finite pulses but at 

the expense of much longer computational times. For example, finite pulse calculations of 

tlie 2-pulse photon echo signal for the special pair were attempted with Mathematica (2.2 

version) on a 200 MHz Pentium Pro computer. Stack overflow occurred after about two 

days. It was estimated that with that computer and the 2.2 version the calculation could take 

over a month."^*^ But this problem will no doubt be overcome by use of much faster 

computers with adequate memory as well as improved algorithms for integral evaluation. 

Utilization of finite pulses is preferable to use of impulsive pulses because the echo signal 

can be determined as function of the pump frequency as it is tuned from the low to high 

energy sides of the absorption band. The equivalent of this in the frequency domain has been 

accomplished Mith hole burning of the special pair band of the bacterial reaction center.'*'^ 
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A temperature dependent 4-point correlation function without damping was derived 

for a system whose modes are both linearly and quadratically coupled and used to illustrate 

quantum beats due to the quadratic coupling which produces a mode frequency change upon 

electronic excitation. The intensities of such beats are strongly dependent on temperature 

and, therefore, can be distinguished from beats due to linearly coupled modes. Inclusion of 

damping for the phonons should be possible but would result in a 4-point correlation function 

of very considerable complexity. Currently, we are attempting to solve this problem for a 

system whose modes are either linearly or quadratically coupled. A solution for the linear 

response function is given in ref. 22. 
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APPENDIX A 

Here we outline the derivation of F (x i ,T2,X3,X4) in the Condon approximation is 

outlined. The 4-point correlation function is given by 

=  p j )  
(Al) 

Following ref. 22, where coherent states for tlie phonon field rather tlian number states were 

used to evaluate the 2-point correlation function, we use the following closure relation for 

coherent states to evaluate Eq. (AI); 

1 f ,2 l-'X-H , d z , , , = I, 
TZ J 

(A2) 

where d-z = d(Re z)d Im(z). Applying Eq. (A2) to Eq. (Al) yields, 

(A3) 

where Q = Tr(e~'^"''). Evaluation of the integral in Eq. (A3) leads to (Q = 0) 

exp(-p/ico72) 
F(t,T2,T3,T4) = exp y / (co"-co ' ) (x i2+t34)x6i  ' exp(6 i  ^62+63)  

(A4) 

where Ty = X[ - Xj and 
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jj = I_g'W'(t2|-T34)-P/ia)"+l(0"T| glu"(T34-T2) ^ 
(A5) 

=5 g-P''«"Lg-''''"T4 +g'M'T43-to"T4 _g'«'T43+'M"(T32-T4) 
- ĴJ 

+ g'a»'(T2|+T43)+(D)"(T32-T4) j j'_^((i)"T, ^ 

+g'">'(T:i-T34)+l(0"{Tii+T3) 
(A6) 

63=5,  
(A7 

where the effective Huang-EUiys factor Sgff is given by Eq. (18). 
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FIGURE CAPTIONS 

Figure 1. Impulsive stimulated photon echo signal for a system with very large 
inhomogeneous broadening and a mode that exhibits both linear and quadratic 
coupling. It was calculated using Eqs. (A4), (8) and (10) with co" = 200 cm"', co' 
= 150 cm~', S = 2.0,7 = 0 and T = 300 K. 

Figure 2. Frequency domain slice obtained from Fig. 1 by taking the Fourier transform of 
Eq. (10) (Eq. (27)) with x = 1 fs and uniform damping corresponding to 
frequency domain widths of 3 cm~'. 

Figure 3. Impulsive photon echo (IPE) signals calculated with Eq. (25) for a model system 
(coj = 30 cm"', 7j = 20 cm"', yg] = 2.5 cm"', w = 64 cm"' and T = 0 K.) for 
S = O.Ol (top), 0.10 (middle) and 0.50 (bottom). PSB denotes phonon sideband 
(see text for discussion). For comparison, the corresponding single-site 
absorption spectra calculated according to Eq. (24) are shown in the right panel. 

Figure 4. Continuation of Fig. 3 with S = 1.7. The 3-D graph is the IPE signal as a 
function of t and x' calculated with Eq. (26), see text for discussion. The time-
integrated signal calculated with Eq. (25) is shown in the lower frame. Inset B. 
with the PSB cutoff, shows the phonon quantum beats and the slow decay due to 
the ZPL. The single site absorption spectrum calculated with Eq. (24) is given in 
inset A. 

Figure 5. Impulsive photon echo (IPE) signals as a function of temperature calculated with 
Eq. (26) for a model system (oj = 25 cm"', S = 0.30, yj = 10 cm"', w = 64 cm~' 

and Ygi (cm"') = 8 n(co q) where co q = 50 cm"'. The top, middle and bottom 

graphs are for 15,25 and 100 K, respectively. 

Figure 6. Impulsive photon echo signals calculated as Fig. 4 at T = 0 K for the special pair 
absorption band of the bacterial reaction center characterized by two linearly 
coupled modes (©jn = 30 cm"', = 20 cm~', S^ = 1.7; ©jp = 120 cm~', y 
sp = 25 cm"', Sgp = 1.5; and w = 64 cm"'. Yd = 2.5 cm"'). The 3-D graph shows 
the fast decay due to the PSB (a), phonon quantum beats b-e and the slow decay 
due to the ZPL. For comparison the time-integrated signals are shown in the 
lower frame. 
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CHAPTER 5. CONCLUDING REMARKS 

For only linear electon-phonon coupling, our proposed g(t;T) provides the most 

physical description of spectroscopic signals for chromophores in condensed phases 

compared with those developed by Osad'ko or Mukamel via the MBO model. Our g(t;T) 

correctly describes pure electronic dephasing and vibrational damping, and assigns each 

vibrational mode in a multi-mode system a different damping constant. Furthermore, it 

provides folding of the vibrational progression members of the absorption profile, which is 

often a desired result. On the other hand, g(t;T) obtained via the MBO model, although it 

assigns each vibrational mode a different damping constant and provides folding of the 

progression members, handles the pure electronic dephasing incorrectly. In addition, it 

provides unphysical description of the phononic transitions because they build on the 

electronic transiton. The g(t;T) developed by Osad'ko, although it does not have any 

damping constants (electronic or vibrational), is set up such that pure electronic dephasing 

and damping of the phonons can easily be taken into account. Thus, this g(t;T) handles 

homogeneous widths of the electronic and vibrational transitions correctly, but it does not 

take folding of the progression members into account. Furthermore, it is not apparent, in the 

time-domain, how this g(t;T) can assign different damping constants for a multi-mode 

system. This problem is taken care of in the frequency-domain expression. As pointed out in 

Chapter 2, g(t;T) is the essential component for calculating linear and non-linear temporal or 

spectral profiles, i.e, g(t;T) is the only mathematical quantity needed for calculating 

spectroscopic signals, in the linear coupling approximation. Therefore, combining our g(t;T) 

with Mukamel's formalism of optical linear and non-linear response fimctions yields 

spectroscopic signals that can account for structural and dynamical information (e.g., pure 

electronic dephasing, quantum beats and spectral diffusion) about the system. 
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The theory developed in this dissertation can easily be extended to take into account 

non-Condon (Hertzberg-Teller coupling), Duschinsky, and anharmonicity (e.g., using the 

Morse potential for the vibrational Hamiltonian in the excited state) effects, in addition to 

linear and quadratic coupling, to see how the associated spectroscopic features might change 

accordingly. The damping can be quantized, as was done in the linear and quadratic 

coupling cases, for the phonons in our J(t;T) in Eq. (12) of Chapter 3. This will break J(t;T) 

into a product of two response functions; one is phononic that handles the vibrational 

relaxation and the other is electronic that describes the pure electronic dephasing. As a result, 

the phonons can be assigned different damping constants in a multi-mode system. Spectral 

density (phonon density of states, p((o)) is a very important quantity in solvation dynamics 

and spectroscopy. One can obtain a physical p((o) from g(t;T) using Mukamel's formalism. 

Although an analytical expression was obtained for a two finite-pulse photon echo 

(PE) with finite inhomogeneous broadening (assuming static nuclei), it was not possible to 

numerically evaluate the triple-integral at T = 0 K using Mathematica 3,0 on a 200 MHz 

Pentium Pro computer due to the extreme complexity of the integrand. The presence of the 

double-integral (the polarization) modulus squared to be integrated over t complicates and 

slows down the integration process. Therefore, only a numerical evaluation of the double-

integral (whose modulus squared generates a PE as a function of t and t') over 13 and tj was 

attempted. A stack overflow, caused by a build up of numerical uncertainties, occurred after 

one day. (If numerical uncertainties are not eliminated, they could lead to incorrect results.) 

A further simplification step was taken by only considering the zero-phonon line and one-

phonon profile in the time-domain. This simplification certainly reduced the numerical 

uncertainties but did not completely resolve the problem. An alternative was to try a 

different numerical technique such as Monte Carlo. The Monte Carlo method was certainly 

able to eliminate the integration numerical uncertainties. However, it slowed the evaluation 

process considerably. It turned out that this evaluation was beyond the capacity of computer 
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resources. Mathematica 3.0 was able to symbolically evaluate the integral over tj and left the 

integration over tj unevaluated (remember that was only for the zero-phonon line and one 

phonon profile). The result was roughly 20 pages of Error, Hypergeometric, hyperbolic, and 

transcendental functions as a function of tj. However, the computer could not handle this 

particular symbolic integration when Mathematica 2.2 was used. 
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APPENDIX A: SPECTRAL ANALYSIS OF THE MULTI-MODE BROWNIAN 

OSCILLATOR (MBO) MODEL 

Here we spectrally analyze the MBO model. We will point out and demonstrate the 

MBO model deficiencies in handling the pure electronic dephasing associated with the 

phononless transition, tlie zero-phonon line (ZPL), by studying its resulting single-site 

absorption spectra, which can be obtained by Fourier transforming the MBO 2-point 

correlation function, (/).The MBO model has been used in different areas of optical 

spectroscopy [1-15], solvation dynamics [1, 8, 16-18], and energy transfer [1, 19, 20]. The 

optical dynamics are attributed entirely to the damping of Frank-Condon (FC) active modes 

which are often intermolecular. It has most often been used in photon echo techniques [1-18] 

to account for quantum beats, as well as homogeneous dephasing, inhomogeneous dephasing, 

and spectral diffusion. In this model the linearly coupled modes are the primary Brownian 

oscillators (BOs). The BOs and the bath oscillators are assumed to be harmonic with the 

coupling between the former and latter taken to be linear in the BO displacement which 

results from excitation of the BO via the electronic transition. The coupling gives rise to an 

effective damping, yj, for each BO j (frequency oj). A key quantity which enters into the 

MBO expressions for the linear and nonlinear response ftinctions is die line broadening 

function, g(t;T), which depends on the linear couplings (Huang-Rhys factors), frequencies 

and damping constants of the BOs. The Fourier transform of the linear correlation ftinction, 

exp(-g(t;T)), yields the linear absorption spectrum. 

The concept of Brownian oscillators to describe the nuclear motion effects on 

solvation dynamics was originally developed by Adehnan and co-workers [21-23] and Hynes 

and co-workers [24-26]. (The name "Brownian" stems from the fact that die nuclear 

coordinates coupled to a bath experience a Brownian motion which is governed by the 
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Langevin equation [27-35]). Mukamel and co-workers [1] generalized these treatments and 

developed the MBO model for linear and non-linear response functions. 

The MBO model has most often been used in the interpretation of photon echo data in 

liquids at room temperature. However, only the overdamped {/j »MBO in the high 

temperature limit has been employed in those experiments (photon echoes), which greatly 

simplifies the linear and non-linear calculations. We are not aware of any linear absorption 

homogeneous lineshapes (single-site absorption spectra) that have been generated before via 

the MBO model at finite temperature or in the low temperature limit. 

Unfortunately, we found that g(t;T) (Eqs. (8.67) of Ref. [1]) for the MBO model at 

finite temperature is very complicated and does not easily lend itself to use. Therefore, we 

will only discuss the MBO model in the low temperature limit (T = 0 K). 
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A. I The MBO Model at Zero Temperature 

The linear 2-point correlation function is given by = 0) 

^m;(0 = exp[-g(0], (A.1) 

with g(t) given by [1] 

;V 

g(0 = 2] S j { t )  
7=1 

f t ,  f t ,  

0 0 0 0 

In the low temperature limit, 

C'j i t )  = ~ exp(-Yy|r|/2) cos(C, j t ) ,  
-^j 

Cj{t )  = - ~ exp(-7y|/|/2) sin(^y/), 

and 

{A.2) 

SjiO = Uj I dXi I dX2 Cj{X2)+i  u j  I C/T, | dxj  Cj iXn) .  

(A.3) 

(A.4) 

(A.5) 

, ,3/2 

=  - L r l  ~ * l/"* j ' 
^ (A.6) 

Using Eqs. (A.3) —(A.6), g(t) reads 
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gj(0  = 1 J DR, exp[-/^ TJ 2- h]  
- 4 /  0  0  

= SjO)/ Hi;, + Y^[\ - exp(-r /12 -  iQ)] ,  

(A.8) 

where 

where Sj = dpi! is the Huang-Rliys factor with dj being the dimensionless linear 

displacement and yj is the damping constant (fwhm) of BO j. (Note that we have omitted the 

reorganizational term energy {iSjO}/) in Eq. (A.8) since (0 does not contain because 

they both cancel in the end (see Eq. (1.51c)). With Eqs. (A.l) and (A.2) /v//w(0 reads 

-fmo (0 = exp{-5^dy//24', - I^.[l-exp(-x/12-iQ)]}. (A. 10) 

Upon power series expansion of Eq. (A. 10), one obtains 

oQ y/» 

(0 = exp(-F;-)2; ^exp[-(5,.<y,./2^ j  + my/  I2) t  -  im Q].  (A. 11) 
m=0 

The linear absorption spectrum is given by 

1 
o(flj) = Re - [ c/r (0 exp(/Q;0- (A. 12) 

0 

Using Eqs. (A. 11) and (A. 12) for mode] yields 
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R E F  1 =  —  < e  a^icu) = "" jexp(-F;.)2^ ^ 
 ̂ [ ,lro {SjCUj / l i^ j  + m y j l )  - i{co-mCj)  

(A. 13) 

It should be more informative to rewrite the lorentzian in Eq. (A. 13) in this form 

ov(cy) = 
Re 

;r 

00 yi» 

«|bO * 

{S JCO JU^ J +myJ2)  -  i{(o-m Q 

{CO - rn^j  )•  +  {S^co^ + m y j l f  
(A. 14) 

Since we are in the low temperamre limit, the quantum number of the initial state for the 

absorption transition is zero, m is the final state quantum number. Equation (A. 14) shows, 

in part, tliat the MBO model yields a ZPL (m = 0) width of 

= (A. 15) 

which depends on the phonon damping yj and the Huang-Rhys factor Sj (for the 

underdamped case «coj). Equation (A. 15) is an unphysical result. In addition, the widths 

of the multi-phonon bands (m > I) 

{Jwhm)„, = rtlT ^ 

contain /'H"". Note, however, that the second term gives folding of the widtlis of the multi-

phonon transitions which will often be the desired result. The resonances in Eq. (27) are 

determined by m = m 

In addition to the unphysical ZPL width that MBO (Eq. (A. 15)) yields, there is a 

flmdamental problem with the ZPL resulting FC factor. The MBO produces negative ZPL 

FC factor: That Yj is a complex quantity presents a complication because there is another 
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complex quantity in the numerator of Eq. (A. 14), i{Q}-m^i), which gives rise to an 

interference effect. This causes the ZPL to go negative. Figure A. I is a single-site 

absorption spectrum calculated according to Eq. (A. 13) with coj = 50 cm"', Sj = 1.7, and yj 

= 30 cm"'. The ZPL cannot be seen because according to Eq. (A. 14) its width is 53 cm"' 

which is too broad to be seen. But if we plot the ZPL by itself, we can see its unphysical 

width and its negative intensity, as shown in Figure A.2. We can examine ZPL closer by 

taking the values of the absorption profile at couple of points; for example, 

(j^{co = 200) = 0.00073 and aj{o) = -200) = -0.0014. It might be argued that taking points is 

not an ultimatum in judging the ZPL behavior. It definitely form a problem if someone tries 

to do fitting, because fitting data is nothing but points. 

We can fix the homogeneous ZPL width problem by removing the MBO width, 

, and replace it with the correct width then Eq. (A. 14) becomes 

Do f « V" 

^  moO ^ •  

Plotting Eq. (A. 17) using the same parameters with y^i= 4 cm"' yields Figure A.3, in which 

the ZPL, clearly, has negative intensity. Furthermore, Figure A.3 shows that the absorption 

intensity goes slightly negative at ~ 300 cm"'. This can be attributed to the interference 

effect, vide supra. 

Koi-rrK^i) 

+iyJ2 + myjI2) '  
(A. 17) 



www.manaraa.com

151 

400 500 300 100 200 -100 

Wavenumbers (cm*^) 

Figure A.l Single-site absorption spectrum calculated according to Eq. (A. 13) with, oij 

= 50 cm"^ Sj = 1.7, and yj = 30 cm"^ at T = 0 K. The homogeneous width of the 

ZPL is 53 cm"^ which is too broad to be seen. 
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1 
^ r\r\ 
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-100 1 
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200 
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Figure A.2 The zero-phonon line calculated as in Figure A.l, the intensity goes negative due 

to the interference effect, see text. 
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400 500 300 200 100 -100 

Wavenumbers (cm"') 

Figure A.3 Single-site absorption spectrum calculated according to Eq. (A. 13) with coj 

= 50 cm"', Sj = 1.7, Yj = 30 cm"', and 4 cm"' at T = 0 K. The ZPL intensity 

becomes very negative, and the PSB goes slightly negative at ~ 300 cm"' due to 

the interference effect, see text for fiirther details. 
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APPENDIX B: A MATHEMATICAL PROOF OF THE EQUIVALENCE OF EQ. (27) 

OF CHAPTER 3 TO EQ. (17) OF HAYES ET AL. [I] 
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Hays et al. [1] start with the thermally averaged Franck-Condon (FC) factors 

expressed in terms of modified Bessel function, as 

m i l  

FC = exp[-5'/2« +1)] 2; /„,[25,V«(« + l)]exp(-//«^/), 
(B.l) 

where n is the phonon thermal occupation number and Sj is the Huang Rhys-factor. For 

convenience -v s pticOj is defined, then one has 

n + 1 

^ n e ' - l  
• + 1 

1 e ' - l  
- + 

c-'-l e'-\ 

( e ' - l )  

( e ' - l )  

f e' ^ 

p/lO), = e 

(B.2) 

It follows that 

/  ,  \ m / 2  
' rt+P _ ^mphaiill 

n ; 
(B.3) 

Next, it is shown that the argument of modified Bessel function, can be written as 

2SjyJn{n-h[) = S'^cschC.r / 2) (B.4) 
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With the help of the following identity, 

csch(x/2) = ̂ coth"(x / 2) -1, (B.5) 

and that 2« +1 = coth(x/2), it follows that 

5^csch(x/2) = •y/coth'(x/2)-l 

= S^V(2« + l)--l 

=  S , V 4 n - + 4 «  +  l - l  ( B . 6 )  

= Sjyj4n{n + \)  

= 2Sj,Jn{,n + \) .  

Combining Eqs. (B.2) and (B.6), Eq. (B.l) reads 

FC = exp[-5'^(2rt +1)] ^cxp{m^o)j/2)l^[SjCsch(j^ci}j /2)] 
/Hs-oo 

X exp(-/<s;/). 

Using the matliematical definition of I„,[SjCsch(/^icOj/2)], 

^[S.csch(Bha}. /2)r^- '  
IJS:CSch{/^io}m] = y^ , (B.8) 

£ir(m + £-hl)2'"^-' 

Eq. (B.7) can be written as 

FC=exp[-5^(2rt+ 1)] ^ ̂ exp(myS;^Qjy2) 
/«=-

[SjCsch( j3^£Oj/2)]"  

i i r (m + e + l )2  

/||s~«0 fsO 

m+2? 

m.—exp(-i^y/)-

(B.7) 

(B-9) 



www.manaraa.com

159 

The above shows that Eq. (B.l) is equivalent to Eq. (B.9), and the both have identical 

temperature dependencies. It is just a question of what lineshape form to replace the 

resulting 5-function when the Fourier transform is performed. 
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APPENDIX C: DERIVATION OF EQ. (29) FROM EQ. (27) OF CHAPTER 3 
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Starting with Eq. (27), 

99 CO 

ai(0',T)=exp[-Sj{2n + l)] 2] 

[S^cschjjShco/l)]'"*-' (/el +(f" + 2t)yj)l2n: 

^!r(m + P. +1)2"'*-' {oj-mcoj)-^{{y^, + (w + ItjYj)/2)-

Since I is only significant when T > 0, the sum over i is lost as T -> 0 and, therefore, one 

can set ^ = 0. The negative values of the integer m can be dealt with if kept in mind that they 

give rise to tlie hot bands, which do not exist as T -> 0 and therefore one must have m > 0. 

Furthermore, the argument of Bessel functions imposes restriction that m > 0 as T ->• 0. 

Consequently, Eq. (C.I) becomes 

33 

a{o}\T) = exp[-5/2« +1)] J] exp(/;?;/) 

(C.2) 
[6',csch(;/)]"' (r,, + my!)/2n: 

r(/n + I)2"' {co-mcojf+ {{y,i^myj)l2f 

Using r(/« +1) = /«! and csch(_>') = 2/(£? '' —e ''), Eq. (C.2) can be rewritten as 
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A{QY,T)  = exp[-5/2« +1)] Jexp(/w;;) 
m=0 

X 
[g,2/(e^-g-0r {Y. ,^my^) l lK 

mil '"  (6)-mQ)^)-+((y^ ,+m/j ) /2)-

« S'/Te'"" l(e'-e-')" 
:exp[-S,(2« + DIS-^ 

m*0 

iY , i -^rnyj ) l l7c  

{co-mco^f my,yif 

® S"' 
:exp[-S,(2n+l)lX 

{Y^+my^yiTT 

{ ( o ~ m o ) ^ f m y , y i f  

(C.3) 

As T 0 (y -> oo), (1 / (1 - e""*"))"' = 1 and « = 0, then Eq. (C.3) becomes 

. {y„ + my^yi7t  

' 1̂ 0 ml {CO-m CO J)- + ((ŷ , + myjyi)'' (C.4) 
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